Shilpaj's picture
Feat: Logic for model training and inference
6f5f635
raw
history blame
9.95 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import numpy as np
import gzip
import os
from pathlib import Path
from datetime import datetime
import urllib.request
import shutil
from tqdm import tqdm
import asyncio
def download_and_extract_mnist_data():
"""Download and extract MNIST dataset from a reliable mirror"""
base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
files = {
"train_images": "train-images-idx3-ubyte.gz",
"train_labels": "train-labels-idx1-ubyte.gz",
"test_images": "t10k-images-idx3-ubyte.gz",
"test_labels": "t10k-labels-idx1-ubyte.gz"
}
data_dir = Path("data/MNIST/raw")
data_dir.mkdir(parents=True, exist_ok=True)
for file_name in files.values():
gz_file_path = data_dir / file_name
extracted_file_path = data_dir / file_name.replace('.gz', '')
# If the extracted file exists, skip downloading
if extracted_file_path.exists():
print(f"{extracted_file_path} already exists, skipping download.")
continue
# Download the file
print(f"Downloading {file_name}...")
url = base_url + file_name
try:
urllib.request.urlretrieve(url, gz_file_path)
print(f"Successfully downloaded {file_name}")
except Exception as e:
print(f"Failed to download {file_name}: {e}")
raise Exception(f"Could not download {file_name}")
# Extract the files
try:
print(f"Extracting {file_name}...")
with gzip.open(gz_file_path, 'rb') as f_in:
with open(extracted_file_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
print(f"Successfully extracted {file_name}")
except Exception as e:
print(f"Failed to extract {file_name}: {e}")
raise Exception(f"Could not extract {file_name}")
def load_mnist_images(filename):
with open(filename, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
return data.reshape(-1, 1, 28, 28).astype(np.float32) / 255.0
def load_mnist_labels(filename):
with open(filename, 'rb') as f:
return np.frombuffer(f.read(), np.uint8, offset=8)
class CustomMNISTDataset(Dataset):
def __init__(self, images_path, labels_path, transform=None):
self.images = load_mnist_images(images_path)
self.labels = load_mnist_labels(labels_path)
self.transform = transform
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
image = torch.FloatTensor(self.images[idx])
label = int(self.labels[idx])
if self.transform:
image = self.transform(image)
return image, label
def validate(model, test_loader, criterion, device):
"""Modified validate function to handle validation properly"""
model.eval()
val_loss = 0
correct = 0
total = 0
num_batches = 0
with torch.no_grad(): # Important: no gradient computation in validation
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
val_loss += criterion(output, target).item() # Don't scale by batch size
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
num_batches += 1
# Average the loss by number of batches and accuracy by total samples
val_loss = val_loss / num_batches # Average loss across batches
val_acc = 100. * correct / total
return val_loss, val_acc
async def train(model, config, websocket=None):
print("\nStarting training...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = model.to(device)
# Create data directory if it doesn't exist
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
# Ensure data is downloaded and extracted
print("Preparing dataset...")
download_and_extract_mnist_data()
# Paths to the extracted files
train_images_path = "data/MNIST/raw/train-images-idx3-ubyte"
train_labels_path = "data/MNIST/raw/train-labels-idx1-ubyte"
test_images_path = "data/MNIST/raw/t10k-images-idx3-ubyte"
test_labels_path = "data/MNIST/raw/t10k-labels-idx1-ubyte"
# Data loading
transform = transforms.Compose([
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = CustomMNISTDataset(train_images_path, train_labels_path, transform=transform)
test_dataset = CustomMNISTDataset(test_images_path, test_labels_path, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=config.batch_size, shuffle=False)
print(f"Dataset loaded. Training samples: {len(train_dataset)}, Test samples: {len(test_dataset)}")
# Initialize optimizer based on config
if config.optimizer.lower() == 'adam':
optimizer = optim.Adam(model.parameters())
else:
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss()
print("\nTraining Configuration:")
print(f"Optimizer: {config.optimizer}")
print(f"Batch Size: {config.batch_size}")
print(f"Network Architecture: {config.block1}-{config.block2}-{config.block3}")
print("\nStarting training loop...")
best_val_acc = 0
history = {
'train_loss': [],
'train_acc': [],
'val_loss': [],
'val_acc': []
}
try:
for epoch in range(config.epochs):
model.train()
total_loss = 0
correct = 0
total = 0
# Create progress bar for each epoch
progress_bar = tqdm(
train_loader,
desc=f"Epoch {epoch+1}/{config.epochs}",
unit='batch',
leave=True
)
for batch_idx, (data, target) in enumerate(progress_bar):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# Calculate batch accuracy
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total += target.size(0)
total_loss += loss.item()
# Calculate current metrics
current_loss = total_loss / (batch_idx + 1)
current_acc = 100. * correct / total
# Update progress bar description
progress_bar.set_postfix({
'loss': f'{current_loss:.4f}',
'acc': f'{current_acc:.2f}%'
})
# Send training update through websocket
if websocket:
try:
await websocket.send_json({
'type': 'training_update',
'data': {
'step': batch_idx + epoch * len(train_loader),
'train_loss': current_loss,
'train_acc': current_acc
}
})
except Exception as e:
print(f"Error sending websocket update: {e}")
# Calculate epoch metrics
train_loss = total_loss / len(train_loader)
train_acc = 100. * correct / total
# Validation phase
model.eval()
val_loss = 0
val_correct = 0
val_total = 0
print("\nRunning validation...")
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
val_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
val_correct += pred.eq(target.view_as(pred)).sum().item()
val_total += target.size(0)
val_loss /= len(test_loader)
val_acc = 100. * val_correct / val_total
# Print epoch results
print(f"\nEpoch {epoch+1}/{config.epochs} Results:")
print(f"Training Loss: {train_loss:.4f} | Training Accuracy: {train_acc:.2f}%")
print(f"Val Loss: {val_loss:.4f} | Val Accuracy: {val_acc:.2f}%")
# Send validation update through websocket
if websocket:
try:
await websocket.send_json({
'type': 'validation_update',
'data': {
'step': (epoch + 1) * len(train_loader),
'val_loss': val_loss,
'val_acc': val_acc
}
})
except Exception as e:
print(f"Error sending websocket update: {e}")
# Save best model
if val_acc > best_val_acc:
best_val_acc = val_acc
print(f"\nNew best validation accuracy: {val_acc:.2f}%")
print("Saving model...")
torch.save(model.state_dict(), 'best_model.pth')
except Exception as e:
print(f"\nError during training: {e}")
raise e
print("\nTraining completed!")
print(f"Best validation accuracy: {best_val_acc:.2f}%")
return history