Spaces:
Sleeping
Sleeping
Fix: Inference issue
Browse files- inference.py +13 -18
inference.py
CHANGED
|
@@ -16,29 +16,24 @@ from pytorch_grad_cam.utils.image import show_cam_on_image
|
|
| 16 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 17 |
|
| 18 |
|
| 19 |
-
def inference(
|
| 20 |
-
model,
|
| 21 |
-
classes,
|
| 22 |
-
transparency=0.5,
|
| 23 |
-
number_of_top_classes=3,
|
| 24 |
-
target_layer_number=4):
|
| 25 |
"""
|
| 26 |
Function to run inference on the input image
|
| 27 |
-
:param
|
|
|
|
|
|
|
|
|
|
| 28 |
:param model: Model to use for inference
|
| 29 |
:param classes: Classes to use for inference
|
| 30 |
-
:param transparency: Percentage of cam overlap over the input image
|
| 31 |
-
:param number_of_top_classes: Number of top predictions for the input image
|
| 32 |
-
:param target_layer_number: Layer for which GradCam to be shown
|
| 33 |
"""
|
| 34 |
# Save a copy of input img
|
| 35 |
-
org_img =
|
| 36 |
|
| 37 |
# Calculate mean over each channel of input image
|
| 38 |
-
mean_r, mean_g, mean_b = np.mean(
|
| 39 |
|
| 40 |
# Calculate Standard deviation over each channel
|
| 41 |
-
std_r, std_g, std_b = np.std(
|
| 42 |
|
| 43 |
# Convert img to tensor and normalize it
|
| 44 |
_transform = transforms.Compose([
|
|
@@ -47,7 +42,7 @@ def inference(input_img,
|
|
| 47 |
])
|
| 48 |
|
| 49 |
# Preprocess the input image
|
| 50 |
-
input_tensor = _transform(
|
| 51 |
|
| 52 |
# Create a mini-batch as expected by the model
|
| 53 |
input_tensor = input_tensor.unsqueeze(0)
|
|
@@ -66,7 +61,7 @@ def inference(input_img,
|
|
| 66 |
|
| 67 |
# Select the top classes based on user input
|
| 68 |
sorted_confidences = sorted(confidences.items(), key=lambda val: val[1], reverse=True)
|
| 69 |
-
show_confidences = OrderedDict(sorted_confidences[:
|
| 70 |
|
| 71 |
# Map layer numbers to meaningful parts of the ResNet architecture
|
| 72 |
_layers = {
|
|
@@ -79,8 +74,8 @@ def inference(input_img,
|
|
| 79 |
}
|
| 80 |
|
| 81 |
# Ensure valid layer selection
|
| 82 |
-
|
| 83 |
-
target_layers = [_layers[
|
| 84 |
|
| 85 |
# Get the class activations from the selected layer
|
| 86 |
cam = GradCAM(model=model, target_layers=target_layers)
|
|
@@ -98,5 +93,5 @@ def inference(input_img,
|
|
| 98 |
grayscale_cam = grayscale_cam[0, :]
|
| 99 |
|
| 100 |
# Overlay input image with Class activations
|
| 101 |
-
visualization = show_cam_on_image(org_img/255., grayscale_cam, use_rgb=True, image_weight=
|
| 102 |
return show_confidences, visualization
|
|
|
|
| 16 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 17 |
|
| 18 |
|
| 19 |
+
def inference(image, alpha, top_k, target_layer, model=None, classes=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
Function to run inference on the input image
|
| 22 |
+
:param image: Image provided by the user
|
| 23 |
+
:param alpha: Percentage of cam overlap over the input image
|
| 24 |
+
:param top_k: Number of top predictions for the input image
|
| 25 |
+
:param target_layer: Layer for which GradCam to be shown
|
| 26 |
:param model: Model to use for inference
|
| 27 |
:param classes: Classes to use for inference
|
|
|
|
|
|
|
|
|
|
| 28 |
"""
|
| 29 |
# Save a copy of input img
|
| 30 |
+
org_img = image.copy()
|
| 31 |
|
| 32 |
# Calculate mean over each channel of input image
|
| 33 |
+
mean_r, mean_g, mean_b = np.mean(image[:, :, 0]/255.), np.mean(image[:, :, 1]/255.), np.mean(image[:, :, 2]/255.)
|
| 34 |
|
| 35 |
# Calculate Standard deviation over each channel
|
| 36 |
+
std_r, std_g, std_b = np.std(image[:, :, 0]/255.), np.std(image[:, :, 1]/255.), np.std(image[:, :, 2]/255.)
|
| 37 |
|
| 38 |
# Convert img to tensor and normalize it
|
| 39 |
_transform = transforms.Compose([
|
|
|
|
| 42 |
])
|
| 43 |
|
| 44 |
# Preprocess the input image
|
| 45 |
+
input_tensor = _transform(image)
|
| 46 |
|
| 47 |
# Create a mini-batch as expected by the model
|
| 48 |
input_tensor = input_tensor.unsqueeze(0)
|
|
|
|
| 61 |
|
| 62 |
# Select the top classes based on user input
|
| 63 |
sorted_confidences = sorted(confidences.items(), key=lambda val: val[1], reverse=True)
|
| 64 |
+
show_confidences = OrderedDict(sorted_confidences[:top_k])
|
| 65 |
|
| 66 |
# Map layer numbers to meaningful parts of the ResNet architecture
|
| 67 |
_layers = {
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
# Ensure valid layer selection
|
| 77 |
+
target_layer = min(max(target_layer, 1), 6)
|
| 78 |
+
target_layers = [_layers[target_layer]]
|
| 79 |
|
| 80 |
# Get the class activations from the selected layer
|
| 81 |
cam = GradCAM(model=model, target_layers=target_layers)
|
|
|
|
| 93 |
grayscale_cam = grayscale_cam[0, :]
|
| 94 |
|
| 95 |
# Overlay input image with Class activations
|
| 96 |
+
visualization = show_cam_on_image(org_img/255., grayscale_cam, use_rgb=True, image_weight=alpha)
|
| 97 |
return show_confidences, visualization
|