Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,117 @@ import numpy as np
|
|
7 |
import gradio as gr
|
8 |
from PIL import ImageDraw
|
9 |
from ultralytics import YOLO
|
10 |
-
from utils.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
# Load the pre-trained model
|
@@ -236,8 +346,6 @@ with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
|
|
236 |
|
237 |
segment_btn_t.click(segment_everything,
|
238 |
inputs=[
|
239 |
-
model,
|
240 |
-
device,
|
241 |
cond_img_t,
|
242 |
input_size_slider_t,
|
243 |
iou_threshold,
|
|
|
7 |
import gradio as gr
|
8 |
from PIL import ImageDraw
|
9 |
from ultralytics import YOLO
|
10 |
+
from utils.tools_gradio import fast_process
|
11 |
+
from utils.tools import format_results, box_prompt, point_prompt, text_prompt
|
12 |
+
|
13 |
+
|
14 |
+
def segment_everything(
|
15 |
+
input,
|
16 |
+
input_size=1024,
|
17 |
+
iou_threshold=0.7,
|
18 |
+
conf_threshold=0.25,
|
19 |
+
better_quality=False,
|
20 |
+
withContours=True,
|
21 |
+
use_retina=True,
|
22 |
+
text="",
|
23 |
+
wider=False,
|
24 |
+
mask_random_color=True,
|
25 |
+
):
|
26 |
+
input_size = int(input_size)
|
27 |
+
w, h = input.size
|
28 |
+
scale = input_size / max(w, h)
|
29 |
+
new_w = int(w * scale)
|
30 |
+
new_h = int(h * scale)
|
31 |
+
input = input.resize((new_w, new_h))
|
32 |
+
|
33 |
+
results = model(input,
|
34 |
+
device=device,
|
35 |
+
retina_masks=True,
|
36 |
+
iou=iou_threshold,
|
37 |
+
conf=conf_threshold,
|
38 |
+
imgsz=input_size, )
|
39 |
+
|
40 |
+
if len(text) > 0:
|
41 |
+
results = format_results(results[0], 0)
|
42 |
+
annotations, _ = text_prompt(results, text, input, device=device, wider=wider)
|
43 |
+
annotations = np.array([annotations])
|
44 |
+
else:
|
45 |
+
annotations = results[0].masks.data
|
46 |
+
|
47 |
+
fig = fast_process(annotations=annotations,
|
48 |
+
image=input,
|
49 |
+
device=device,
|
50 |
+
scale=(1024 // input_size),
|
51 |
+
better_quality=better_quality,
|
52 |
+
mask_random_color=mask_random_color,
|
53 |
+
bbox=None,
|
54 |
+
use_retina=use_retina,
|
55 |
+
withContours=withContours, )
|
56 |
+
return fig
|
57 |
+
|
58 |
+
|
59 |
+
def segment_with_points(
|
60 |
+
input,
|
61 |
+
input_size=1024,
|
62 |
+
iou_threshold=0.7,
|
63 |
+
conf_threshold=0.25,
|
64 |
+
better_quality=False,
|
65 |
+
withContours=True,
|
66 |
+
use_retina=True,
|
67 |
+
mask_random_color=True,
|
68 |
+
):
|
69 |
+
global global_points
|
70 |
+
global global_point_label
|
71 |
+
|
72 |
+
input_size = int(input_size)
|
73 |
+
w, h = input.size
|
74 |
+
scale = input_size / max(w, h)
|
75 |
+
new_w = int(w * scale)
|
76 |
+
new_h = int(h * scale)
|
77 |
+
input = input.resize((new_w, new_h))
|
78 |
+
|
79 |
+
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
80 |
+
|
81 |
+
results = model(input,
|
82 |
+
device=device,
|
83 |
+
retina_masks=True,
|
84 |
+
iou=iou_threshold,
|
85 |
+
conf=conf_threshold,
|
86 |
+
imgsz=input_size, )
|
87 |
+
|
88 |
+
results = format_results(results[0], 0)
|
89 |
+
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
90 |
+
annotations = np.array([annotations])
|
91 |
+
|
92 |
+
fig = fast_process(annotations=annotations,
|
93 |
+
image=input,
|
94 |
+
device=device,
|
95 |
+
scale=(1024 // input_size),
|
96 |
+
better_quality=better_quality,
|
97 |
+
mask_random_color=mask_random_color,
|
98 |
+
bbox=None,
|
99 |
+
use_retina=use_retina,
|
100 |
+
withContours=withContours, )
|
101 |
+
|
102 |
+
global_points = []
|
103 |
+
global_point_label = []
|
104 |
+
return fig, None
|
105 |
+
|
106 |
+
|
107 |
+
def get_points_with_draw(image, label, evt: gr.SelectData):
|
108 |
+
global global_points
|
109 |
+
global global_point_label
|
110 |
+
|
111 |
+
x, y = evt.index[0], evt.index[1]
|
112 |
+
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
|
113 |
+
global_points.append([x, y])
|
114 |
+
global_point_label.append(1 if label == 'Add Mask' else 0)
|
115 |
+
|
116 |
+
print(x, y, label == 'Add Mask')
|
117 |
+
|
118 |
+
draw = ImageDraw.Draw(image)
|
119 |
+
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
120 |
+
return image
|
121 |
|
122 |
|
123 |
# Load the pre-trained model
|
|
|
346 |
|
347 |
segment_btn_t.click(segment_everything,
|
348 |
inputs=[
|
|
|
|
|
349 |
cond_img_t,
|
350 |
input_size_slider_t,
|
351 |
iou_threshold,
|