Spaces:
Build error
Build error
# ------------------------------------------------------------------------ | |
# Grounding DINO | |
# url: https://github.com/IDEA-Research/GroundingDINO | |
# Copyright (c) 2023 IDEA. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------ | |
# Deformable DETR | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from: | |
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py | |
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py | |
# https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py | |
# ------------------------------------------------------------------------------------------------ | |
import math | |
import warnings | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.init import constant_, xavier_uniform_ | |
try: | |
from groundingdino import _C | |
except: | |
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!") | |
# helpers | |
def _is_power_of_2(n): | |
if (not isinstance(n, int)) or (n < 0): | |
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n))) | |
return (n & (n - 1) == 0) and n != 0 | |
class MultiScaleDeformableAttnFunction(Function): | |
def forward( | |
ctx, | |
value, | |
value_spatial_shapes, | |
value_level_start_index, | |
sampling_locations, | |
attention_weights, | |
im2col_step, | |
): | |
ctx.im2col_step = im2col_step | |
output = _C.ms_deform_attn_forward( | |
value, | |
value_spatial_shapes, | |
value_level_start_index, | |
sampling_locations, | |
attention_weights, | |
ctx.im2col_step, | |
) | |
ctx.save_for_backward( | |
value, | |
value_spatial_shapes, | |
value_level_start_index, | |
sampling_locations, | |
attention_weights, | |
) | |
return output | |
def backward(ctx, grad_output): | |
( | |
value, | |
value_spatial_shapes, | |
value_level_start_index, | |
sampling_locations, | |
attention_weights, | |
) = ctx.saved_tensors | |
grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward( | |
value, | |
value_spatial_shapes, | |
value_level_start_index, | |
sampling_locations, | |
attention_weights, | |
grad_output, | |
ctx.im2col_step, | |
) | |
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None | |
def multi_scale_deformable_attn_pytorch( | |
value: torch.Tensor, | |
value_spatial_shapes: torch.Tensor, | |
sampling_locations: torch.Tensor, | |
attention_weights: torch.Tensor, | |
) -> torch.Tensor: | |
bs, _, num_heads, embed_dims = value.shape | |
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape | |
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) | |
sampling_grids = 2 * sampling_locations - 1 | |
sampling_value_list = [] | |
for level, (H_, W_) in enumerate(value_spatial_shapes): | |
# bs, H_*W_, num_heads, embed_dims -> | |
# bs, H_*W_, num_heads*embed_dims -> | |
# bs, num_heads*embed_dims, H_*W_ -> | |
# bs*num_heads, embed_dims, H_, W_ | |
value_l_ = ( | |
value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_) | |
) | |
# bs, num_queries, num_heads, num_points, 2 -> | |
# bs, num_heads, num_queries, num_points, 2 -> | |
# bs*num_heads, num_queries, num_points, 2 | |
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) | |
# bs*num_heads, embed_dims, num_queries, num_points | |
sampling_value_l_ = F.grid_sample( | |
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False | |
) | |
sampling_value_list.append(sampling_value_l_) | |
# (bs, num_queries, num_heads, num_levels, num_points) -> | |
# (bs, num_heads, num_queries, num_levels, num_points) -> | |
# (bs, num_heads, 1, num_queries, num_levels*num_points) | |
attention_weights = attention_weights.transpose(1, 2).reshape( | |
bs * num_heads, 1, num_queries, num_levels * num_points | |
) | |
output = ( | |
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) | |
.sum(-1) | |
.view(bs, num_heads * embed_dims, num_queries) | |
) | |
return output.transpose(1, 2).contiguous() | |
class MultiScaleDeformableAttention(nn.Module): | |
"""Multi-Scale Deformable Attention Module used in Deformable-DETR | |
`Deformable DETR: Deformable Transformers for End-to-End Object Detection. | |
<https://arxiv.org/pdf/2010.04159.pdf>`_. | |
Args: | |
embed_dim (int): The embedding dimension of Attention. Default: 256. | |
num_heads (int): The number of attention heads. Default: 8. | |
num_levels (int): The number of feature map used in Attention. Default: 4. | |
num_points (int): The number of sampling points for each query | |
in each head. Default: 4. | |
img2col_steps (int): The step used in image_to_column. Defualt: 64. | |
dropout (float): Dropout layer used in output. Default: 0.1. | |
batch_first (bool): if ``True``, then the input and output tensor will be | |
provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)` | |
""" | |
def __init__( | |
self, | |
embed_dim: int = 256, | |
num_heads: int = 8, | |
num_levels: int = 4, | |
num_points: int = 4, | |
img2col_step: int = 64, | |
batch_first: bool = False, | |
): | |
super().__init__() | |
if embed_dim % num_heads != 0: | |
raise ValueError( | |
"embed_dim must be divisible by num_heads, but got {} and {}".format( | |
embed_dim, num_heads | |
) | |
) | |
head_dim = embed_dim // num_heads | |
self.batch_first = batch_first | |
if not _is_power_of_2(head_dim): | |
warnings.warn( | |
""" | |
You'd better set d_model in MSDeformAttn to make sure that | |
each dim of the attention head a power of 2, which is more efficient. | |
""" | |
) | |
self.im2col_step = img2col_step | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.num_levels = num_levels | |
self.num_points = num_points | |
self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2) | |
self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points) | |
self.value_proj = nn.Linear(embed_dim, embed_dim) | |
self.output_proj = nn.Linear(embed_dim, embed_dim) | |
self.init_weights() | |
def _reset_parameters(self): | |
return self.init_weights() | |
def init_weights(self): | |
""" | |
Default initialization for Parameters of Module. | |
""" | |
constant_(self.sampling_offsets.weight.data, 0.0) | |
thetas = torch.arange(self.num_heads, dtype=torch.float32) * ( | |
2.0 * math.pi / self.num_heads | |
) | |
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) | |
grid_init = ( | |
(grid_init / grid_init.abs().max(-1, keepdim=True)[0]) | |
.view(self.num_heads, 1, 1, 2) | |
.repeat(1, self.num_levels, self.num_points, 1) | |
) | |
for i in range(self.num_points): | |
grid_init[:, :, i, :] *= i + 1 | |
with torch.no_grad(): | |
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) | |
constant_(self.attention_weights.weight.data, 0.0) | |
constant_(self.attention_weights.bias.data, 0.0) | |
xavier_uniform_(self.value_proj.weight.data) | |
constant_(self.value_proj.bias.data, 0.0) | |
xavier_uniform_(self.output_proj.weight.data) | |
constant_(self.output_proj.bias.data, 0.0) | |
def freeze_sampling_offsets(self): | |
print("Freeze sampling offsets") | |
self.sampling_offsets.weight.requires_grad = False | |
self.sampling_offsets.bias.requires_grad = False | |
def freeze_attention_weights(self): | |
print("Freeze attention weights") | |
self.attention_weights.weight.requires_grad = False | |
self.attention_weights.bias.requires_grad = False | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: Optional[torch.Tensor] = None, | |
value: Optional[torch.Tensor] = None, | |
query_pos: Optional[torch.Tensor] = None, | |
key_padding_mask: Optional[torch.Tensor] = None, | |
reference_points: Optional[torch.Tensor] = None, | |
spatial_shapes: Optional[torch.Tensor] = None, | |
level_start_index: Optional[torch.Tensor] = None, | |
**kwargs | |
) -> torch.Tensor: | |
"""Forward Function of MultiScaleDeformableAttention | |
Args: | |
query (torch.Tensor): Query embeddings with shape | |
`(num_query, bs, embed_dim)` | |
key (torch.Tensor): Key embeddings with shape | |
`(num_key, bs, embed_dim)` | |
value (torch.Tensor): Value embeddings with shape | |
`(num_key, bs, embed_dim)` | |
query_pos (torch.Tensor): The position embedding for `query`. Default: None. | |
key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`, | |
indicating which elements within `key` to be ignored in attention. | |
reference_points (torch.Tensor): The normalized reference points | |
with shape `(bs, num_query, num_levels, 2)`, | |
all elements is range in [0, 1], top-left (0, 0), | |
bottom-right (1, 1), including padding are. | |
or `(N, Length_{query}, num_levels, 4)`, add additional | |
two dimensions `(h, w)` to form reference boxes. | |
spatial_shapes (torch.Tensor): Spatial shape of features in different levels. | |
With shape `(num_levels, 2)`, last dimension represents `(h, w)`. | |
level_start_index (torch.Tensor): The start index of each level. A tensor with | |
shape `(num_levels, )` which can be represented as | |
`[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`. | |
Returns: | |
torch.Tensor: forward results with shape `(num_query, bs, embed_dim)` | |
""" | |
if value is None: | |
value = query | |
if query_pos is not None: | |
query = query + query_pos | |
if not self.batch_first: | |
# change to (bs, num_query ,embed_dims) | |
query = query.permute(1, 0, 2) | |
value = value.permute(1, 0, 2) | |
bs, num_query, _ = query.shape | |
bs, num_value, _ = value.shape | |
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value | |
value = self.value_proj(value) | |
if key_padding_mask is not None: | |
value = value.masked_fill(key_padding_mask[..., None], float(0)) | |
value = value.view(bs, num_value, self.num_heads, -1) | |
sampling_offsets = self.sampling_offsets(query).view( | |
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2 | |
) | |
attention_weights = self.attention_weights(query).view( | |
bs, num_query, self.num_heads, self.num_levels * self.num_points | |
) | |
attention_weights = attention_weights.softmax(-1) | |
attention_weights = attention_weights.view( | |
bs, | |
num_query, | |
self.num_heads, | |
self.num_levels, | |
self.num_points, | |
) | |
# bs, num_query, num_heads, num_levels, num_points, 2 | |
if reference_points.shape[-1] == 2: | |
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) | |
sampling_locations = ( | |
reference_points[:, :, None, :, None, :] | |
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :] | |
) | |
elif reference_points.shape[-1] == 4: | |
sampling_locations = ( | |
reference_points[:, :, None, :, None, :2] | |
+ sampling_offsets | |
/ self.num_points | |
* reference_points[:, :, None, :, None, 2:] | |
* 0.5 | |
) | |
else: | |
raise ValueError( | |
"Last dim of reference_points must be 2 or 4, but get {} instead.".format( | |
reference_points.shape[-1] | |
) | |
) | |
if torch.cuda.is_available() and value.is_cuda: | |
halffloat = False | |
if value.dtype == torch.float16: | |
halffloat = True | |
value = value.float() | |
sampling_locations = sampling_locations.float() | |
attention_weights = attention_weights.float() | |
output = MultiScaleDeformableAttnFunction.apply( | |
value, | |
spatial_shapes, | |
level_start_index, | |
sampling_locations, | |
attention_weights, | |
self.im2col_step, | |
) | |
if halffloat: | |
output = output.half() | |
else: | |
output = multi_scale_deformable_attn_pytorch( | |
value, spatial_shapes, sampling_locations, attention_weights | |
) | |
output = self.output_proj(output) | |
if not self.batch_first: | |
output = output.permute(1, 0, 2) | |
return output | |
def create_dummy_class(klass, dependency, message=""): | |
""" | |
When a dependency of a class is not available, create a dummy class which throws ImportError | |
when used. | |
Args: | |
klass (str): name of the class. | |
dependency (str): name of the dependency. | |
message: extra message to print | |
Returns: | |
class: a class object | |
""" | |
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass) | |
if message: | |
err = err + " " + message | |
class _DummyMetaClass(type): | |
# throw error on class attribute access | |
def __getattr__(_, __): # noqa: B902 | |
raise ImportError(err) | |
class _Dummy(object, metaclass=_DummyMetaClass): | |
# throw error on constructor | |
def __init__(self, *args, **kwargs): | |
raise ImportError(err) | |
return _Dummy | |
def create_dummy_func(func, dependency, message=""): | |
""" | |
When a dependency of a function is not available, create a dummy function which throws | |
ImportError when used. | |
Args: | |
func (str): name of the function. | |
dependency (str or list[str]): name(s) of the dependency. | |
message: extra message to print | |
Returns: | |
function: a function object | |
""" | |
err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func) | |
if message: | |
err = err + " " + message | |
if isinstance(dependency, (list, tuple)): | |
dependency = ",".join(dependency) | |
def _dummy(*args, **kwargs): | |
raise ImportError(err) | |
return _dummy | |