HKU_Canteen_VA / app.py
SheldonYC's picture
update asr model
1538ee3
raw
history blame
1.65 kB
import os
os.system("""pip install nemo_toolkit['all']""")
import nemo.collections.asr as nemo_asr
from transformers import pipeline
import numpy as np
import gradio as gr
import librosa
from scipy.io.wavfile import write
def respond(message, chat_history):
bot_message = message
chat_history.append((message, bot_message))
return "", chat_history
def transcribe(audio):
sr, y = audio
audio_name = "resampled_audio.wav"
resampled_audio = librosa.resample(y=y.astype("float"), orig_sr=sr, target_sr=16000)
write(audio_name, 16000, resampled_audio)
result = asr_model.transcribe([f"./{audio_name}"])
return result[0]
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name="nvidia/parakeet-ctc-0.6b")
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(
"""
# HKU Canteen VA
""")
va = gr.Chatbot(container=False)
with gr.Row(): # text input
text_input = gr.Textbox(placeholder="Ask me anything...", container=False, scale=1)
submit_btn = gr.Button("Submit", scale=0)
with gr.Row(): # audio input
recording = gr.Microphone(show_download_button=False, container=False)
with gr.Row(): # button toolbar
clear = gr.ClearButton([text_input, va])
text_input.submit(respond, [text_input, va], [text_input, va], queue=False)
submit_btn.click(respond, [text_input, va], [text_input, va], queue=False)
# recording.stop_recording(transcribe, [recording], [text_input]).then(respond,s [text_input, va], [text_input, va], queue=False)
recording.stop_recording(transcribe, [recording], [text_input])
if __name__ == "__main__":
demo.launch()