ass
Browse files- assets/aneks_model.pt +3 -0
- assets/embs.pickle +3 -0
- assets/final_and_lem.csv +3 -0
- assets/find.py +184 -0
- assets/imagenet.py +28 -0
- assets/imagenet_classes.json +1 -0
- assets/russian.txt +422 -0
- assets/skin.pth +3 -0
- assets/skin.py +31 -0
- assets//320/226/320/265/320/275/321/217.jpg +0 -0
assets/aneks_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05b2226d365c1d2d545c298aa55b53994400253a785232fdb3b782f98561df02
|
3 |
+
size 500971693
|
assets/embs.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b6aa7e9160d808b12adf62fbf647133584b7d2e94a50c31c344f3e826dd254b
|
3 |
+
size 83429968
|
assets/final_and_lem.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af569b68f81245944003f31c1571d9edba89ecd242f3aafac11368245934901b
|
3 |
+
size 170696424
|
assets/find.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer, AutoModel,BertTokenizer,BertModel
|
4 |
+
import numpy as np
|
5 |
+
import pickle
|
6 |
+
# import sklearn
|
7 |
+
import nltk
|
8 |
+
nltk.download('stopwords')
|
9 |
+
nltk.download('averaged_perceptron_tagger')
|
10 |
+
nltk.download('wordnet')
|
11 |
+
from nltk.stem import WordNetLemmatizer
|
12 |
+
from nltk.tag import pos_tag
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
from pymystem3 import Mystem
|
15 |
+
from functools import lru_cache
|
16 |
+
import string
|
17 |
+
import faiss
|
18 |
+
from tqdm import tqdm
|
19 |
+
DEVICE='cpu'
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
21 |
+
model = AutoModel.from_pretrained("cointegrated/rubert-tiny2")
|
22 |
+
eng_stop_words = stopwords.words('english')
|
23 |
+
with open('assets/russian.txt', 'r') as f:
|
24 |
+
ru_stop_words = f.read()
|
25 |
+
ru_stop_words=ru_stop_words.split('\n')
|
26 |
+
allow="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдеёжзийклмнопрстуфхцчшщъыьэюя0123456789-' \n\t"
|
27 |
+
#Задаём стеммер
|
28 |
+
m= Mystem()
|
29 |
+
def embed_bert_cls(text, model=model, tokenizer=tokenizer)->np.array:
|
30 |
+
"""
|
31 |
+
Встраивает входной текст с использованием модели на основе BERT.
|
32 |
+
|
33 |
+
Аргументы:
|
34 |
+
text (str): Входной текст для встраивания.
|
35 |
+
model (torch.nn.Module): Модель на основе BERT для использования при встраивании.
|
36 |
+
tokenizer (transformers.PreTrainedTokenizer): Токенизатор для токенизации текста.
|
37 |
+
|
38 |
+
Возвращает:
|
39 |
+
numpy.ndarray: Встроенное представление входного текста.
|
40 |
+
"""
|
41 |
+
# Токенизируем текст и преобразуем его в PyTorch тензоры
|
42 |
+
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
43 |
+
|
44 |
+
# Отключаем вычисление градиентов
|
45 |
+
with torch.no_grad():
|
46 |
+
# Пропускаем тензоры через модель
|
47 |
+
model_output = model(**{k: v.to(DEVICE) for k, v in t.items()})
|
48 |
+
|
49 |
+
# Извлекаем последний скрытый состояние из выходных данных модели
|
50 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
51 |
+
|
52 |
+
# Нормализуем встроенные представления
|
53 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
54 |
+
embeddings=embeddings[0].cpu().numpy()
|
55 |
+
|
56 |
+
# Преобразуем встроенные представления в массив numpy и возвращаем первый элемент
|
57 |
+
return embeddings
|
58 |
+
|
59 |
+
def lems_eng(text):
|
60 |
+
if type(text)==type('text'):
|
61 |
+
text=text.split()
|
62 |
+
wnl= WordNetLemmatizer()
|
63 |
+
lemmatized= []
|
64 |
+
pos_map = {
|
65 |
+
'NN': 'n', # существительное
|
66 |
+
'NNS': 'n', # существительное (множественное число)
|
67 |
+
'NNP': 'n', # собственное имя (единственное число)
|
68 |
+
'NNPS': 'n', # собственное имя (множественное число)
|
69 |
+
'VB': 'v', # глагол (инфинитив)
|
70 |
+
'VBD': 'v', # глагол (прошедшее время)
|
71 |
+
'VBG': 'v', # глагол (настоящее причастие/герундий)
|
72 |
+
'VBN': 'v', # глагол (прошедшее причастие)
|
73 |
+
'JJ': 'a', # прилагательное
|
74 |
+
'JJR': 'a', # прилагательное (сравнительная степень)
|
75 |
+
'JJS': 'a', # прилагательное (превосходная степень)
|
76 |
+
'RB': 'r', # наречие
|
77 |
+
'RBR': 'r', # наречие (сравнительная степень)
|
78 |
+
'RBS': 'r', # наречие (превосходная степень)
|
79 |
+
'PRP': 'n', # личное местоимение
|
80 |
+
'PRP$': 'n', # притяжательное местоимение
|
81 |
+
'DT': 'n' # определитель
|
82 |
+
}
|
83 |
+
pos_tags = pos_tag(text)
|
84 |
+
lemmas = []
|
85 |
+
for token, pos in pos_tags:
|
86 |
+
pos = pos_map.get(pos,'n')
|
87 |
+
lemma = wnl.lemmatize(token, pos=pos)
|
88 |
+
lemmas.append(lemma)
|
89 |
+
return ' '.join(lemmas)
|
90 |
+
|
91 |
+
def lems_rus(texts):
|
92 |
+
if type(texts)==type([]):
|
93 |
+
texts=' '.join(texts)
|
94 |
+
#lemmatized =[]
|
95 |
+
lemmas = m.lemmatize(texts)
|
96 |
+
return ''.join(lemmas)
|
97 |
+
def clean(text: str)-> str:
|
98 |
+
|
99 |
+
|
100 |
+
text = ''.join(c for c in text if c in allow)
|
101 |
+
text= text.split()
|
102 |
+
text = [word for word in text if word.lower() not in ru_stop_words]
|
103 |
+
text = [word for word in text if word.lower() not in eng_stop_words]
|
104 |
+
return ' '.join(text)
|
105 |
+
|
106 |
+
|
107 |
+
def improved_lemmatizer(texts,batch_size=1000):
|
108 |
+
if type(texts)==type('text'):
|
109 |
+
texts=texts.split()
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
#Читаем датасет книжек
|
118 |
+
df=pd.read_csv('assets/final_and_lem.csv',index_col=0).reset_index(drop=True)
|
119 |
+
|
120 |
+
# embs=[]
|
121 |
+
# for i in tqdm(df.index):
|
122 |
+
# embs.append(embed_bert_cls(df['annotation'][i]))
|
123 |
+
|
124 |
+
# with open('embs.pickle', 'wb') as f:
|
125 |
+
# pickle.dump(embs, f)
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
#Читаем эмбединги
|
130 |
+
with open('assets/embs.pickle', 'rb') as f:
|
131 |
+
embs = pickle.load(f)
|
132 |
+
#df['']
|
133 |
+
embs =np.array(embs)
|
134 |
+
print('Тип выхода:',type(embs),'Размер выхода: ',embs.shape)
|
135 |
+
|
136 |
+
#Читаем стоп-слова
|
137 |
+
|
138 |
+
index=faiss.IndexFlatL2(embs.shape[1])
|
139 |
+
index.add(embs)
|
140 |
+
@lru_cache()
|
141 |
+
def find_similar(text, k=10):
|
142 |
+
"""
|
143 |
+
Находит похожие тексты на основе косинусного сходства.
|
144 |
+
|
145 |
+
Аргументы:
|
146 |
+
text (str): Входной текст для поиска похожих текстов.
|
147 |
+
embeddings (numpy.ndarray): Предварительно вычисленные встроенные представления текстов.
|
148 |
+
threshold (float): Порог, выше которого тексты считаются похожими.
|
149 |
+
|
150 |
+
Возвращает:
|
151 |
+
numpy.ndarray: Сходства между входным текстом и каждым текстом во встроенных представлениях.
|
152 |
+
"""
|
153 |
+
|
154 |
+
# Встраиваем входной текст
|
155 |
+
text_emb = embed_bert_cls(text)
|
156 |
+
print('Текстовые эмбединги\t',text_emb )
|
157 |
+
text_emb = np.expand_dims(text_emb, axis=0)
|
158 |
+
print(f'Тип поискового запроса: {type(text_emb)}\nРазмер полученного запроса: {text_emb.shape}')#\nСам запрос:\n{text_emb}\n')
|
159 |
+
dist,idx=index.search(text_emb,k)
|
160 |
+
print(f'Расстнояния:{dist}\tАйдишки{idx}')
|
161 |
+
return dist.squeeze()[::-1],idx.squeeze()[::-1]#,idx
|
162 |
+
#@lru_cache()
|
163 |
+
# def find_unsimilar(text,n=10, d=embs.shape[0]):
|
164 |
+
# """
|
165 |
+
# Находит похожие тексты на основе косинусного сходства.
|
166 |
+
|
167 |
+
# Аргументы:
|
168 |
+
# text (str): Входной текст для поиска похожих текстов.
|
169 |
+
# embeddings (numpy.ndarray): Предварительно вычисленные встроенные представления текстов.
|
170 |
+
# threshold (float): Порог, выше которого тексты считаются похожими.
|
171 |
+
|
172 |
+
# Возвращает:
|
173 |
+
# numpy.ndarray: Сходства между входным текстом и каждым текстом во встроенных представлениях.
|
174 |
+
# """
|
175 |
+
|
176 |
+
# # Встраиваем входной текст
|
177 |
+
# text_emb = embed_bert_cls(text)
|
178 |
+
# text_emb = np.expand_dims(text_emb, axis=0)
|
179 |
+
# print(f'Тип поискового запроса: {type(text_emb)}\nРазмер полученного запроса: {text_emb.shape}')#\nСам запрос:\n{text_emb}\n')
|
180 |
+
# dist,idx=index.search(text_emb,d)
|
181 |
+
# dist=dist.flatten()[::-1]
|
182 |
+
# idx=idx.flatten()[::-1]
|
183 |
+
|
184 |
+
# return dist[:n],idx[:n]#,idx
|
assets/imagenet.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
|
4 |
+
import json
|
5 |
+
#import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
from torchvision.models import inception_v3,Inception_V3_Weights
|
8 |
+
model = inception_v3(weights=Inception_V3_Weights.DEFAULT)
|
9 |
+
|
10 |
+
|
11 |
+
with open('assets/imagenet_classes.json', 'r') as f:
|
12 |
+
class_labels = json.load(f)
|
13 |
+
class_labels=[value for _,value in class_labels.items()]
|
14 |
+
def img_class(img):
|
15 |
+
transform = transforms.Compose([
|
16 |
+
transforms.Resize((299, 299)), # Размер, ожидаемый Inception_v3
|
17 |
+
transforms.ToTensor(),
|
18 |
+
])
|
19 |
+
|
20 |
+
input_image = transform(img).unsqueeze(0) # Добавьте размерность пакета (batch dimension)
|
21 |
+
|
22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else 'mps')
|
23 |
+
model.to(device)
|
24 |
+
model.eval()
|
25 |
+
input_image = input_image.to(device)
|
26 |
+
with torch.no_grad():
|
27 |
+
output = model(input_image)
|
28 |
+
return class_labels[torch.argmax(output).item()]
|
assets/imagenet_classes.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"0": "tench, Tinca tinca", "1": "goldfish, Carassius auratus", "2": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias", "3": "tiger shark, Galeocerdo cuvieri", "4": "hammerhead, hammerhead shark", "5": "electric ray, crampfish, numbfish, torpedo", "6": "stingray", "7": "cock", "8": "hen", "9": "ostrich, Struthio camelus", "10": "brambling, Fringilla montifringilla", "11": "goldfinch, Carduelis carduelis", "12": "house finch, linnet, Carpodacus mexicanus", "13": "junco, snowbird", "14": "indigo bunting, indigo finch, indigo bird, Passerina cyanea", "15": "robin, American robin, Turdus migratorius", "16": "bulbul", "17": "jay", "18": "magpie", "19": "chickadee", "20": "water ouzel, dipper", "21": "kite", "22": "bald eagle, American eagle, Haliaeetus leucocephalus", "23": "vulture", "24": "great grey owl, great gray owl, Strix nebulosa", "25": "European fire salamander, Salamandra salamandra", "26": "common newt, Triturus vulgaris", "27": "eft", "28": "spotted salamander, Ambystoma maculatum", "29": "axolotl, mud puppy, Ambystoma mexicanum", "30": "bullfrog, Rana catesbeiana", "31": "tree frog, tree-frog", "32": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui", "33": "loggerhead, loggerhead turtle, Caretta caretta", "34": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea", "35": "mud turtle", "36": "terrapin", "37": "box turtle, box tortoise", "38": "banded gecko", "39": "common iguana, iguana, Iguana iguana", "40": "American chameleon, anole, Anolis carolinensis", "41": "whiptail, whiptail lizard", "42": "agama", "43": "frilled lizard, Chlamydosaurus kingi", "44": "alligator lizard", "45": "Gila monster, Heloderma suspectum", "46": "green lizard, Lacerta viridis", "47": "African chameleon, Chamaeleo chamaeleon", "48": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis", "49": "African crocodile, Nile crocodile, Crocodylus niloticus", "50": "American alligator, Alligator mississipiensis", "51": "triceratops", "52": "thunder snake, worm snake, Carphophis amoenus", "53": "ringneck snake, ring-necked snake, ring snake", "54": "hognose snake, puff adder, sand viper", "55": "green snake, grass snake", "56": "king snake, kingsnake", "57": "garter snake, grass snake", "58": "water snake", "59": "vine snake", "60": "night snake, Hypsiglena torquata", "61": "boa constrictor, Constrictor constrictor", "62": "rock python, rock snake, Python sebae", "63": "Indian cobra, Naja naja", "64": "green mamba", "65": "sea snake", "66": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus", "67": "diamondback, diamondback rattlesnake, Crotalus adamanteus", "68": "sidewinder, horned rattlesnake, Crotalus cerastes", "69": "trilobite", "70": "harvestman, daddy longlegs, Phalangium opilio", "71": "scorpion", "72": "black and gold garden spider, Argiope aurantia", "73": "barn spider, Araneus cavaticus", "74": "garden spider, Aranea diademata", "75": "black widow, Latrodectus mactans", "76": "tarantula", "77": "wolf spider, hunting spider", "78": "tick", "79": "centipede", "80": "black grouse", "81": "ptarmigan", "82": "ruffed grouse, partridge, Bonasa umbellus", "83": "prairie chicken, prairie grouse, prairie fowl", "84": "peacock", "85": "quail", "86": "partridge", "87": "African grey, African gray, Psittacus erithacus", "88": "macaw", "89": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita", "90": "lorikeet", "91": "coucal", "92": "bee eater", "93": "hornbill", "94": "hummingbird", "95": "jacamar", "96": "toucan", "97": "drake", "98": "red-breasted merganser, Mergus serrator", "99": "goose", "100": "black swan, Cygnus atratus", "101": "tusker", "102": "echidna, spiny anteater, anteater", "103": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus", "104": "wallaby, brush kangaroo", "105": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus", "106": "wombat", "107": "jellyfish", "108": "sea anemone, anemone", "109": "brain coral", "110": "flatworm, platyhelminth", "111": "nematode, nematode worm, roundworm", "112": "conch", "113": "snail", "114": "slug", "115": "sea slug, nudibranch", "116": "chiton, coat-of-mail shell, sea cradle, polyplacophore", "117": "chambered nautilus, pearly nautilus, nautilus", "118": "Dungeness crab, Cancer magister", "119": "rock crab, Cancer irroratus", "120": "fiddler crab", "121": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica", "122": "American lobster, Northern lobster, Maine lobster, Homarus americanus", "123": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish", "124": "crayfish, crawfish, crawdad, crawdaddy", "125": "hermit crab", "126": "isopod", "127": "white stork, Ciconia ciconia", "128": "black stork, Ciconia nigra", "129": "spoonbill", "130": "flamingo", "131": "little blue heron, Egretta caerulea", "132": "American egret, great white heron, Egretta albus", "133": "bittern", "134": "crane", "135": "limpkin, Aramus pictus", "136": "European gallinule, Porphyrio porphyrio", "137": "American coot, marsh hen, mud hen, water hen, Fulica americana", "138": "bustard", "139": "ruddy turnstone, Arenaria interpres", "140": "red-backed sandpiper, dunlin, Erolia alpina", "141": "redshank, Tringa totanus", "142": "dowitcher", "143": "oystercatcher, oyster catcher", "144": "pelican", "145": "king penguin, Aptenodytes patagonica", "146": "albatross, mollymawk", "147": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus", "148": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca", "149": "dugong, Dugong dugon", "150": "sea lion", "151": "Chihuahua", "152": "Japanese spaniel", "153": "Maltese dog, Maltese terrier, Maltese", "154": "Pekinese, Pekingese, Peke", "155": "Shih-Tzu", "156": "Blenheim spaniel", "157": "papillon", "158": "toy terrier", "159": "Rhodesian ridgeback", "160": "Afghan hound, Afghan", "161": "basset, basset hound", "162": "beagle", "163": "bloodhound, sleuthhound", "164": "bluetick", "165": "black-and-tan coonhound", "166": "Walker hound, Walker foxhound", "167": "English foxhound", "168": "redbone", "169": "borzoi, Russian wolfhound", "170": "Irish wolfhound", "171": "Italian greyhound", "172": "whippet", "173": "Ibizan hound, Ibizan Podenco", "174": "Norwegian elkhound, elkhound", "175": "otterhound, otter hound", "176": "Saluki, gazelle hound", "177": "Scottish deerhound, deerhound", "178": "Weimaraner", "179": "Staffordshire bullterrier, Staffordshire bull terrier", "180": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier", "181": "Bedlington terrier", "182": "Border terrier", "183": "Kerry blue terrier", "184": "Irish terrier", "185": "Norfolk terrier", "186": "Norwich terrier", "187": "Yorkshire terrier", "188": "wire-haired fox terrier", "189": "Lakeland terrier", "190": "Sealyham terrier, Sealyham", "191": "Airedale, Airedale terrier", "192": "cairn, cairn terrier", "193": "Australian terrier", "194": "Dandie Dinmont, Dandie Dinmont terrier", "195": "Boston bull, Boston terrier", "196": "miniature schnauzer", "197": "giant schnauzer", "198": "standard schnauzer", "199": "Scotch terrier, Scottish terrier, Scottie", "200": "Tibetan terrier, chrysanthemum dog", "201": "silky terrier, Sydney silky", "202": "soft-coated wheaten terrier", "203": "West Highland white terrier", "204": "Lhasa, Lhasa apso", "205": "flat-coated retriever", "206": "curly-coated retriever", "207": "golden retriever", "208": "Labrador retriever", "209": "Chesapeake Bay retriever", "210": "German short-haired pointer", "211": "vizsla, Hungarian pointer", "212": "English setter", "213": "Irish setter, red setter", "214": "Gordon setter", "215": "Brittany spaniel", "216": "clumber, clumber spaniel", "217": "English springer, English springer spaniel", "218": "Welsh springer spaniel", "219": "cocker spaniel, English cocker spaniel, cocker", "220": "Sussex spaniel", "221": "Irish water spaniel", "222": "kuvasz", "223": "schipperke", "224": "groenendael", "225": "malinois", "226": "briard", "227": "kelpie", "228": "komondor", "229": "Old English sheepdog, bobtail", "230": "Shetland sheepdog, Shetland sheep dog, Shetland", "231": "collie", "232": "Border collie", "233": "Bouvier des Flandres, Bouviers des Flandres", "234": "Rottweiler", "235": "German shepherd, German shepherd dog, German police dog, alsatian", "236": "Doberman, Doberman pinscher", "237": "miniature pinscher", "238": "Greater Swiss Mountain dog", "239": "Bernese mountain dog", "240": "Appenzeller", "241": "EntleBucher", "242": "boxer", "243": "bull mastiff", "244": "Tibetan mastiff", "245": "French bulldog", "246": "Great Dane", "247": "Saint Bernard, St Bernard", "248": "Eskimo dog, husky", "249": "malamute, malemute, Alaskan malamute", "250": "Siberian husky", "251": "dalmatian, coach dog, carriage dog", "252": "affenpinscher, monkey pinscher, monkey dog", "253": "basenji", "254": "pug, pug-dog", "255": "Leonberg", "256": "Newfoundland, Newfoundland dog", "257": "Great Pyrenees", "258": "Samoyed, Samoyede", "259": "Pomeranian", "260": "chow, chow chow", "261": "keeshond", "262": "Brabancon griffon", "263": "Pembroke, Pembroke Welsh corgi", "264": "Cardigan, Cardigan Welsh corgi", "265": "toy poodle", "266": "miniature poodle", "267": "standard poodle", "268": "Mexican hairless", "269": "timber wolf, grey wolf, gray wolf, Canis lupus", "270": "white wolf, Arctic wolf, Canis lupus tundrarum", "271": "red wolf, maned wolf, Canis rufus, Canis niger", "272": "coyote, prairie wolf, brush wolf, Canis latrans", "273": "dingo, warrigal, warragal, Canis dingo", "274": "dhole, Cuon alpinus", "275": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus", "276": "hyena, hyaena", "277": "red fox, Vulpes vulpes", "278": "kit fox, Vulpes macrotis", "279": "Arctic fox, white fox, Alopex lagopus", "280": "grey fox, gray fox, Urocyon cinereoargenteus", "281": "tabby, tabby catamount", "282": "tiger cat", "283": "Persian cat", "284": "Siamese cat, Siamese", "285": "Egyptian cat", "286": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor", "287": "lynx, catamount", "288": "leopard, Panthera pardus", "289": "snow leopard, ounce, Panthera uncia", "290": "jaguar, panther, Panthera onca, Felis onca", "291": "lion, king of beasts, Panthera leo", "292": "tiger, Panthera tigris", "293": "cheetah, chetah, Acinonyx jubatus", "294": "brown bear, bruin, Ursus arctos", "295": "American black bear, black bear, Ursus americanus, Euarctos americanus", "296": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus", "297": "sloth bear, Melursus ursinus, Ursus ursinus", "298": "mongoose", "299": "meerkat, mierkat", "300": "tiger beetle", "301": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle", "302": "ground beetle, carabid beetle", "303": "long-horned beetle, longicorn, longicorn beetle", "304": "leaf beetle, chrysomelid", "305": "dung beetle", "306": "rhinoceros beetle", "307": "weevil", "308": "fly", "309": "bee", "310": "ant, emmet, pismire", "311": "grasshopper, hopper", "312": "cricket", "313": "walking stick, walkingstick, stick insect", "314": "cockroach, roach", "315": "mantis, mantid", "316": "cicada, cicala", "317": "leafhopper", "318": "lacewing, lacewing fly", "319": "\"dragonfly, darning needle, devils darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk\"", "320": "damselfly", "321": "admiral", "322": "ringlet, ringlet butterfly", "323": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus", "324": "cabbage butterfly", "325": "sulphur butterfly, sulfur butterfly", "326": "lycaenid, lycaenid butterfly", "327": "starfish, sea star", "328": "sea urchin", "329": "sea cucumber, holothurian", "330": "wood rabbit, cottontail, cottontail rabbit", "331": "hare", "332": "Angora, Angora rabbit", "333": "hamster", "334": "porcupine, hedgehog", "335": "fox squirrel, eastern fox squirrel, Sciurus niger", "336": "marmot", "337": "beaver", "338": "guinea pig, Cavia cobaya", "339": "sorrel", "340": "zebra", "341": "hog, pig, grunter, squealer, Sus scrofa", "342": "wild boar, boar, Sus scrofa", "343": "warthog", "344": "hippopotamus, hippo, river horse, Hippopotamus amphibius", "345": "ox", "346": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis", "347": "bison", "348": "ram, tup", "349": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis", "350": "ibex, Capra ibex", "351": "hartebeest", "352": "impala, Aepyceros melampus", "353": "gazelle", "354": "Arabian camel, dromedary, Camelus dromedarius", "355": "llama", "356": "weasel", "357": "mink", "358": "polecat, fitch, foulmart, foumart, Mustela putorius", "359": "black-footed ferret, ferret, Mustela nigripes", "360": "otter", "361": "skunk, polecat, wood pussy", "362": "badger", "363": "armadillo", "364": "three-toed sloth, ai, Bradypus tridactylus", "365": "orangutan, orang, orangutang, Pongo pygmaeus", "366": "gorilla, Gorilla gorilla", "367": "chimpanzee, chimp, Pan troglodytes", "368": "gibbon, Hylobates lar", "369": "siamang, Hylobates syndactylus, Symphalangus syndactylus", "370": "guenon, guenon monkey", "371": "patas, hussar monkey, Erythrocebus patas", "372": "baboon", "373": "macaque", "374": "langur", "375": "colobus, colobus monkey", "376": "proboscis monkey, Nasalis larvatus", "377": "marmoset", "378": "capuchin, ringtail, Cebus capucinus", "379": "howler monkey, howler", "380": "titi, titi monkey", "381": "spider monkey, Ateles geoffroyi", "382": "squirrel monkey, Saimiri sciureus", "383": "Madagascar cat, ring-tailed lemur, Lemur catta", "384": "indri, indris, Indri indri, Indri brevicaudatus", "385": "Indian elephant, Elephas maximus", "386": "African elephant, Loxodonta africana", "387": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens", "388": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca", "389": "barracouta, snoek", "390": "eel", "391": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch", "392": "rock beauty, Holocanthus tricolor", "393": "anemone fish", "394": "sturgeon", "395": "gar, garfish, garpike, billfish, Lepisosteus osseus", "396": "lionfish", "397": "puffer, pufferfish, blowfish, globefish", "398": "abacus", "399": "abaya", "400": "\"academic gown, academic robe, judges robe\"", "401": "accordion, piano accordion, squeeze box", "402": "acoustic guitar", "403": "aircraft carrier, carrier, flattop, attack aircraft carrier", "404": "airliner", "405": "airship, dirigible", "406": "altar", "407": "ambulance", "408": "amphibian, amphibious vehicle", "409": "analog clock", "410": "apiary, bee house", "411": "apron", "412": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin", "413": "assault rifle, assault gun", "414": "backpack, back pack, knapsack, packsack, rucksack, haversack", "415": "bakery, bakeshop, bakehouse", "416": "balance beam, beam", "417": "balloon", "418": "ballpoint, ballpoint pen, ballpen, Biro", "419": "Band Aid", "420": "banjo", "421": "bannister, banister, balustrade, balusters, handrail", "422": "barbell", "423": "barber chair", "424": "barbershop", "425": "barn", "426": "barometer", "427": "barrel, cask", "428": "barrow, garden cart, lawn cart, wheelbarrow", "429": "baseball", "430": "basketball", "431": "bassinet", "432": "bassoon", "433": "bathing cap, swimming cap", "434": "bath towel", "435": "bathtub, bathing tub, bath, tub", "436": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon", "437": "beacon, lighthouse, beacon light, pharos", "438": "beaker", "439": "bearskin, busby, shako", "440": "beer bottle", "441": "beer glass", "442": "bell cote, bell cot", "443": "bib", "444": "bicycle-built-for-two, tandem bicycle, tandem", "445": "bikini, two-piece", "446": "binder, ring-binder", "447": "binoculars, field glasses, opera glasses", "448": "birdhouse", "449": "boathouse", "450": "bobsled, bobsleigh, bob", "451": "bolo tie, bolo, bola tie, bola", "452": "bonnet, poke bonnet", "453": "bookcase", "454": "bookshop, bookstore, bookstall", "455": "bottlecap", "456": "bow", "457": "bow tie, bow-tie, bowtie", "458": "brass, memorial tablet, plaque", "459": "brassiere, bra, bandeau", "460": "breakwater, groin, groyne, mole, bulwark, seawall, jetty", "461": "breastplate, aegis, egis", "462": "broom", "463": "bucket, pail", "464": "buckle", "465": "bulletproof vest", "466": "bullet train, bullet", "467": "butcher shop, meat market", "468": "cab, hack, taxi, taxicab", "469": "caldron, cauldron", "470": "candle, taper, wax light", "471": "cannon", "472": "canoe", "473": "can opener, tin opener", "474": "cardigan", "475": "car mirror", "476": "carousel, carrousel, merry-go-round, roundabout, whirligig", "477": "\"carpenters kit, tool kit\"", "478": "carton", "479": "car wheel", "480": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM", "481": "cassette", "482": "cassette player", "483": "castle", "484": "catamaran", "485": "CD player", "486": "cello, violoncello", "487": "cellular telephone, cellular phone, cellphone, cell, mobile phone", "488": "chain", "489": "chainlink fence", "490": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour", "491": "chain saw, chainsaw", "492": "chest", "493": "chiffonier, commode", "494": "chime, bell, gong", "495": "china cabinet, china closet", "496": "Christmas stocking", "497": "church, church building", "498": "cinema, movie theater, movie theatre, movie house, picture palace", "499": "cleaver, meat cleaver, chopper", "500": "cliff dwelling", "501": "cloak", "502": "clog, geta, patten, sabot", "503": "cocktail shaker", "504": "coffee mug", "505": "coffeepot", "506": "coil, spiral, volute, whorl, helix", "507": "combination lock", "508": "computer keyboard, keypad", "509": "confectionery, confectionary, candy store", "510": "container ship, containership, container vessel", "511": "convertible", "512": "corkscrew, bottle screw", "513": "cornet, horn, trumpet, trump", "514": "cowboy boot", "515": "cowboy hat, ten-gallon hat", "516": "cradle", "517": "crane", "518": "crash helmet", "519": "crate", "520": "crib, cot", "521": "Crock Pot", "522": "croquet ball", "523": "crutch", "524": "cuirass", "525": "dam, dike, dyke", "526": "desk", "527": "desktop computer", "528": "dial telephone, dial phone", "529": "diaper, nappy, napkin", "530": "digital clock", "531": "digital watch", "532": "dining table, board", "533": "dishrag, dishcloth", "534": "dishwasher, dish washer, dishwashing machine", "535": "disk brake, disc brake", "536": "dock, dockage, docking facility", "537": "dogsled, dog sled, dog sleigh", "538": "dome", "539": "doormat, welcome mat", "540": "drilling platform, offshore rig", "541": "drum, membranophone, tympan", "542": "drumstick", "543": "dumbbell", "544": "Dutch oven", "545": "electric fan, blower", "546": "electric guitar", "547": "electric locomotive", "548": "entertainment center", "549": "envelope", "550": "espresso maker", "551": "face powder", "552": "feather boa, boa", "553": "file, file cabinet, filing cabinet", "554": "fireboat", "555": "fire engine, fire truck", "556": "fire screen, fireguard", "557": "flagpole, flagstaff", "558": "flute, transverse flute", "559": "folding chair", "560": "football helmet", "561": "forklift", "562": "fountain", "563": "fountain pen", "564": "four-poster", "565": "freight car", "566": "French horn, horn", "567": "frying pan, frypan, skillet", "568": "fur coat", "569": "garbage truck, dustcart", "570": "gasmask, respirator, gas helmet", "571": "gas pump, gasoline pump, petrol pump, island dispenser", "572": "goblet", "573": "go-kart", "574": "golf ball", "575": "golfcart, golf cart", "576": "gondola", "577": "gong, tam-tam", "578": "gown", "579": "grand piano, grand", "580": "greenhouse, nursery, glasshouse", "581": "grille, radiator grille", "582": "grocery store, grocery, food market, market", "583": "guillotine", "584": "hair slide", "585": "hair spray", "586": "half track", "587": "hammer", "588": "hamper", "589": "hand blower, blow dryer, blow drier, hair dryer, hair drier", "590": "hand-held computer, hand-held microcomputer", "591": "handkerchief, hankie, hanky, hankey", "592": "hard disc, hard disk, fixed disk", "593": "harmonica, mouth organ, harp, mouth harp", "594": "harp", "595": "harvester, reaper", "596": "hatchet", "597": "holster", "598": "home theater, home theatre", "599": "honeycomb", "600": "hook, claw", "601": "hoopskirt, crinoline", "602": "horizontal bar, high bar", "603": "horse cart, horse-cart", "604": "hourglass", "605": "iPod", "606": "iron, smoothing iron", "607": "\"jack-o-lantern\"", "608": "jean, blue jean, denim", "609": "jeep, landrover", "610": "jersey, T-shirt, tee shirt", "611": "jigsaw puzzle", "612": "jinrikisha, ricksha, rickshaw", "613": "joystick", "614": "kimono", "615": "knee pad", "616": "knot", "617": "lab coat, laboratory coat", "618": "ladle", "619": "lampshade, lamp shade", "620": "laptop, laptop computer", "621": "lawn mower, mower", "622": "lens cap, lens cover", "623": "letter opener, paper knife, paperknife", "624": "library", "625": "lifeboat", "626": "lighter, light, igniter, ignitor", "627": "limousine, limo", "628": "liner, ocean liner", "629": "lipstick, lip rouge", "630": "Loafer", "631": "lotion", "632": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system", "633": "\"loupe, jewelers loupe\"", "634": "lumbermill, sawmill", "635": "magnetic compass", "636": "mailbag, postbag", "637": "mailbox, letter box", "638": "maillot", "639": "maillot, tank suit", "640": "manhole cover", "641": "maraca", "642": "marimba, xylophone", "643": "mask", "644": "matchstick", "645": "maypole", "646": "maze, labyrinth", "647": "measuring cup", "648": "medicine chest, medicine cabinet", "649": "megalith, megalithic structure", "650": "microphone, mike", "651": "microwave, microwave oven", "652": "military uniform", "653": "milk can", "654": "minibus", "655": "miniskirt, mini", "656": "minivan", "657": "missile", "658": "mitten", "659": "mixing bowl", "660": "mobile home, manufactured home", "661": "Model T", "662": "modem", "663": "monastery", "664": "monitor", "665": "moped", "666": "mortar", "667": "mortarboard", "668": "mosque", "669": "mosquito net", "670": "motor scooter, scooter", "671": "mountain bike, all-terrain bike, off-roader", "672": "mountain tent", "673": "mouse, computer mouse", "674": "mousetrap", "675": "moving van", "676": "muzzle", "677": "nail", "678": "neck brace", "679": "necklace", "680": "nipple", "681": "notebook, notebook computer", "682": "obelisk", "683": "oboe, hautboy, hautbois", "684": "ocarina, sweet potato", "685": "odometer, hodometer, mileometer, milometer", "686": "oil filter", "687": "organ, pipe organ", "688": "oscilloscope, scope, cathode-ray oscilloscope, CRO", "689": "overskirt", "690": "oxcart", "691": "oxygen mask", "692": "packet", "693": "paddle, boat paddle", "694": "paddlewheel, paddle wheel", "695": "padlock", "696": "paintbrush", "697": "\"pajama, pyjama, pjs, jammies\"", "698": "palace", "699": "panpipe, pandean pipe, syrinx", "700": "paper towel", "701": "parachute, chute", "702": "parallel bars, bars", "703": "park bench", "704": "parking meter", "705": "passenger car, coach, carriage", "706": "patio, terrace", "707": "pay-phone, pay-station", "708": "pedestal, plinth, footstall", "709": "pencil box, pencil case", "710": "pencil sharpener", "711": "perfume, essence", "712": "Petri dish", "713": "photocopier", "714": "pick, plectrum, plectron", "715": "pickelhaube", "716": "picket fence, paling", "717": "pickup, pickup truck", "718": "pier", "719": "piggy bank, penny bank", "720": "pill bottle", "721": "pillow", "722": "ping-pong ball", "723": "pinwheel", "724": "pirate, pirate ship", "725": "pitcher, ewer", "726": "\"plane, carpenters plane, woodworking plane\"", "727": "planetarium", "728": "plastic bag", "729": "plate rack", "730": "plow, plough", "731": "\"plunger, plumbers helper\"", "732": "Polaroid camera, Polaroid Land camera", "733": "pole", "734": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria", "735": "poncho", "736": "pool table, billiard table, snooker table", "737": "pop bottle, soda bottle", "738": "pot, flowerpot", "739": "\"potters wheel\"", "740": "power drill", "741": "prayer rug, prayer mat", "742": "printer", "743": "prison, prison house", "744": "projectile, missile", "745": "projector", "746": "puck, hockey puck", "747": "punching bag, punch bag, punching ball, punchball", "748": "purse", "749": "quill, quill pen", "750": "quilt, comforter, comfort, puff", "751": "racer, race car, racing car", "752": "racket, racquet", "753": "radiator", "754": "radio, wireless", "755": "radio telescope, radio reflector", "756": "rain barrel", "757": "recreational vehicle, RV, R.V.", "758": "reel", "759": "reflex camera", "760": "refrigerator, icebox", "761": "remote control, remote", "762": "restaurant, eating house, eating place, eatery", "763": "revolver, six-gun, six-shooter", "764": "rifle", "765": "rocking chair, rocker", "766": "rotisserie", "767": "rubber eraser, rubber, pencil eraser", "768": "rugby ball", "769": "rule, ruler", "770": "running shoe", "771": "safe", "772": "safety pin", "773": "saltshaker, salt shaker", "774": "sandal", "775": "sarong", "776": "sax, saxophone", "777": "scabbard", "778": "scale, weighing machine", "779": "school bus", "780": "schooner", "781": "scoreboard", "782": "screen, CRT screen", "783": "screw", "784": "screwdriver", "785": "seat belt, seatbelt", "786": "sewing machine", "787": "shield, buckler", "788": "shoe shop, shoe-shop, shoe store", "789": "shoji", "790": "shopping basket", "791": "shopping cart", "792": "shovel", "793": "shower cap", "794": "shower curtain", "795": "ski", "796": "ski mask", "797": "sleeping bag", "798": "slide rule, slipstick", "799": "sliding door", "800": "slot, one-armed bandit", "801": "snorkel", "802": "snowmobile", "803": "snowplow, snowplough", "804": "soap dispenser", "805": "soccer ball", "806": "sock", "807": "solar dish, solar collector, solar furnace", "808": "sombrero", "809": "soup bowl", "810": "space bar", "811": "space heater", "812": "space shuttle", "813": "spatula", "814": "speedboat", "815": "\"spider web, spiders web\"", "816": "spindle", "817": "sports car, sport car", "818": "spotlight, spot", "819": "stage", "820": "steam locomotive", "821": "steel arch bridge", "822": "steel drum", "823": "stethoscope", "824": "stole", "825": "stone wall", "826": "stopwatch, stop watch", "827": "stove", "828": "strainer", "829": "streetcar, tram, tramcar, trolley, trolley car", "830": "stretcher", "831": "studio couch, day bed", "832": "stupa, tope", "833": "submarine, pigboat, sub, U-boat", "834": "suit, suit of clothes", "835": "sundial", "836": "sunglass", "837": "sunglasses, dark glasses, shades", "838": "sunscreen, sunblock, sun blocker", "839": "suspension bridge", "840": "swab, swob, mop", "841": "sweatshirt", "842": "swimming trunks, bathing trunks", "843": "swing", "844": "switch, electric switch, electrical switch", "845": "syringe", "846": "table lamp", "847": "tank, army tank, armored combat vehicle, armoured combat vehicle", "848": "tape player", "849": "teapot", "850": "teddy, teddy bear", "851": "television, television system", "852": "tennis ball", "853": "thatch, thatched roof", "854": "theater curtain, theatre curtain", "855": "thimble", "856": "thresher, thrasher, threshing machine", "857": "throne", "858": "tile roof", "859": "toaster", "860": "tobacco shop, tobacconist shop, tobacconist", "861": "toilet seat", "862": "torch", "863": "totem pole", "864": "tow truck, tow car, wrecker", "865": "toyshop", "866": "tractor", "867": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi", "868": "tray", "869": "trench coat", "870": "tricycle, trike, velocipede", "871": "trimaran", "872": "tripod", "873": "triumphal arch", "874": "trolleybus, trolley coach, trackless trolley", "875": "trombone", "876": "tub, vat", "877": "turnstile", "878": "typewriter keyboard", "879": "umbrella", "880": "unicycle, monocycle", "881": "upright, upright piano", "882": "vacuum, vacuum cleaner", "883": "vase", "884": "vault", "885": "velvet", "886": "vending machine", "887": "vestment", "888": "viaduct", "889": "violin, fiddle", "890": "volleyball", "891": "waffle iron", "892": "wall clock", "893": "wallet, billfold, notecase, pocketbook", "894": "wardrobe, closet, press", "895": "warplane, military plane", "896": "washbasin, handbasin, washbowl, lavabo, wash-hand basin", "897": "washer, automatic washer, washing machine", "898": "water bottle", "899": "water jug", "900": "water tower", "901": "whiskey jug", "902": "whistle", "903": "wig", "904": "window screen", "905": "window shade", "906": "Windsor tie", "907": "wine bottle", "908": "wing", "909": "wok", "910": "wooden spoon", "911": "wool, woolen, woollen", "912": "worm fence, snake fence, snake-rail fence, Virginia fence", "913": "wreck", "914": "yawl", "915": "yurt", "916": "web site, website, internet site, site", "917": "comic book", "918": "crossword puzzle, crossword", "919": "street sign", "920": "traffic light, traffic signal, stoplight", "921": "book jacket, dust cover, dust jacket, dust wrapper", "922": "menu", "923": "plate", "924": "guacamole", "925": "consomme", "926": "hot pot, hotpot", "927": "trifle", "928": "ice cream, icecream", "929": "ice lolly, lolly, lollipop, popsicle", "930": "French loaf", "931": "bagel, beigel", "932": "pretzel", "933": "cheeseburger", "934": "hotdog, hot dog, red hot", "935": "mashed potato", "936": "head cabbage", "937": "broccoli", "938": "cauliflower", "939": "zucchini, courgette", "940": "spaghetti squash", "941": "acorn squash", "942": "butternut squash", "943": "cucumber, cuke", "944": "artichoke, globe artichoke", "945": "bell pepper", "946": "cardoon", "947": "mushroom", "948": "Granny Smith", "949": "strawberry", "950": "orange", "951": "lemon", "952": "fig", "953": "pineapple, ananas", "954": "banana", "955": "jackfruit, jak, jack", "956": "custard apple", "957": "pomegranate", "958": "hay", "959": "carbonara", "960": "chocolate sauce, chocolate syrup", "961": "dough", "962": "meat loaf, meatloaf", "963": "pizza, pizza pie", "964": "potpie", "965": "burrito", "966": "red wine", "967": "espresso", "968": "cup", "969": "eggnog", "970": "alp", "971": "bubble", "972": "cliff, drop, drop-off", "973": "coral reef", "974": "geyser", "975": "lakeside, lakeshore", "976": "promontory, headland, head, foreland", "977": "sandbar, sand bar", "978": "seashore, coast, seacoast, sea-coast", "979": "valley, vale", "980": "volcano", "981": "ballplayer, baseball player", "982": "groom, bridegroom", "983": "scuba diver", "984": "rapeseed", "985": "daisy", "986": "yellow ladys slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", "987": "corn", "988": "acorn", "989": "hip, rose hip, rosehip", "990": "buckeye, horse chestnut, conker", "991": "coral fungus", "992": "agaric", "993": "gyromitra", "994": "stinkhorn, carrion fungus", "995": "earthstar", "996": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa", "997": "bolete", "998": "ear, spike, capitulum", "999": "toilet tissue, toilet paper, bathroom tissue", "1000": "None of the above"}
|
assets/russian.txt
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
а
|
2 |
+
в
|
3 |
+
г
|
4 |
+
е
|
5 |
+
ж
|
6 |
+
и
|
7 |
+
к
|
8 |
+
м
|
9 |
+
о
|
10 |
+
с
|
11 |
+
т
|
12 |
+
у
|
13 |
+
я
|
14 |
+
бы
|
15 |
+
во
|
16 |
+
вы
|
17 |
+
да
|
18 |
+
до
|
19 |
+
ее
|
20 |
+
ей
|
21 |
+
ею
|
22 |
+
её
|
23 |
+
же
|
24 |
+
за
|
25 |
+
из
|
26 |
+
им
|
27 |
+
их
|
28 |
+
ли
|
29 |
+
мы
|
30 |
+
на
|
31 |
+
не
|
32 |
+
ни
|
33 |
+
но
|
34 |
+
ну
|
35 |
+
нх
|
36 |
+
об
|
37 |
+
он
|
38 |
+
от
|
39 |
+
по
|
40 |
+
со
|
41 |
+
та
|
42 |
+
те
|
43 |
+
то
|
44 |
+
ту
|
45 |
+
ты
|
46 |
+
уж
|
47 |
+
без
|
48 |
+
был
|
49 |
+
вам
|
50 |
+
вас
|
51 |
+
ваш
|
52 |
+
вон
|
53 |
+
вот
|
54 |
+
все
|
55 |
+
всю
|
56 |
+
вся
|
57 |
+
всё
|
58 |
+
где
|
59 |
+
год
|
60 |
+
два
|
61 |
+
две
|
62 |
+
дел
|
63 |
+
для
|
64 |
+
его
|
65 |
+
ему
|
66 |
+
еще
|
67 |
+
ещё
|
68 |
+
или
|
69 |
+
ими
|
70 |
+
имя
|
71 |
+
как
|
72 |
+
кем
|
73 |
+
ком
|
74 |
+
кто
|
75 |
+
лет
|
76 |
+
мне
|
77 |
+
мог
|
78 |
+
мож
|
79 |
+
мои
|
80 |
+
мой
|
81 |
+
мор
|
82 |
+
моя
|
83 |
+
моё
|
84 |
+
над
|
85 |
+
нам
|
86 |
+
нас
|
87 |
+
наш
|
88 |
+
нее
|
89 |
+
ней
|
90 |
+
нем
|
91 |
+
нет
|
92 |
+
нею
|
93 |
+
неё
|
94 |
+
них
|
95 |
+
оба
|
96 |
+
она
|
97 |
+
они
|
98 |
+
оно
|
99 |
+
под
|
100 |
+
пор
|
101 |
+
при
|
102 |
+
про
|
103 |
+
раз
|
104 |
+
сам
|
105 |
+
сих
|
106 |
+
так
|
107 |
+
там
|
108 |
+
тем
|
109 |
+
тех
|
110 |
+
том
|
111 |
+
тот
|
112 |
+
тою
|
113 |
+
три
|
114 |
+
тут
|
115 |
+
уже
|
116 |
+
чем
|
117 |
+
что
|
118 |
+
эта
|
119 |
+
эти
|
120 |
+
это
|
121 |
+
эту
|
122 |
+
алло
|
123 |
+
буду
|
124 |
+
будь
|
125 |
+
бывь
|
126 |
+
была
|
127 |
+
были
|
128 |
+
было
|
129 |
+
быть
|
130 |
+
вами
|
131 |
+
ваша
|
132 |
+
ваше
|
133 |
+
ваши
|
134 |
+
ведь
|
135 |
+
весь
|
136 |
+
вниз
|
137 |
+
всем
|
138 |
+
всех
|
139 |
+
всею
|
140 |
+
года
|
141 |
+
году
|
142 |
+
даже
|
143 |
+
двух
|
144 |
+
день
|
145 |
+
если
|
146 |
+
есть
|
147 |
+
зато
|
148 |
+
кого
|
149 |
+
кому
|
150 |
+
куда
|
151 |
+
лишь
|
152 |
+
люди
|
153 |
+
мало
|
154 |
+
меля
|
155 |
+
меня
|
156 |
+
мимо
|
157 |
+
мира
|
158 |
+
мной
|
159 |
+
мною
|
160 |
+
мочь
|
161 |
+
надо
|
162 |
+
нами
|
163 |
+
наша
|
164 |
+
наше
|
165 |
+
наши
|
166 |
+
него
|
167 |
+
нему
|
168 |
+
ниже
|
169 |
+
ними
|
170 |
+
один
|
171 |
+
пока
|
172 |
+
пора
|
173 |
+
пять
|
174 |
+
рано
|
175 |
+
сама
|
176 |
+
сами
|
177 |
+
само
|
178 |
+
саму
|
179 |
+
свое
|
180 |
+
свои
|
181 |
+
свою
|
182 |
+
себе
|
183 |
+
себя
|
184 |
+
семь
|
185 |
+
стал
|
186 |
+
суть
|
187 |
+
твой
|
188 |
+
твоя
|
189 |
+
твоё
|
190 |
+
тебе
|
191 |
+
тебя
|
192 |
+
теми
|
193 |
+
того
|
194 |
+
тоже
|
195 |
+
тому
|
196 |
+
туда
|
197 |
+
хоть
|
198 |
+
хотя
|
199 |
+
чаще
|
200 |
+
чего
|
201 |
+
чему
|
202 |
+
чтоб
|
203 |
+
чуть
|
204 |
+
этим
|
205 |
+
этих
|
206 |
+
этой
|
207 |
+
этом
|
208 |
+
этот
|
209 |
+
более
|
210 |
+
будем
|
211 |
+
будет
|
212 |
+
будто
|
213 |
+
будут
|
214 |
+
вверх
|
215 |
+
вдали
|
216 |
+
вдруг
|
217 |
+
везде
|
218 |
+
внизу
|
219 |
+
время
|
220 |
+
всего
|
221 |
+
всеми
|
222 |
+
всему
|
223 |
+
всюду
|
224 |
+
давно
|
225 |
+
даром
|
226 |
+
долго
|
227 |
+
друго
|
228 |
+
жизнь
|
229 |
+
занят
|
230 |
+
затем
|
231 |
+
зачем
|
232 |
+
здесь
|
233 |
+
иметь
|
234 |
+
какая
|
235 |
+
какой
|
236 |
+
книга
|
237 |
+
когда
|
238 |
+
кроме
|
239 |
+
лучше
|
240 |
+
между
|
241 |
+
менее
|
242 |
+
много
|
243 |
+
могут
|
244 |
+
может
|
245 |
+
можно
|
246 |
+
можхо
|
247 |
+
назад
|
248 |
+
низко
|
249 |
+
нужно
|
250 |
+
одной
|
251 |
+
около
|
252 |
+
опять
|
253 |
+
очень
|
254 |
+
перед
|
255 |
+
позже
|
256 |
+
после
|
257 |
+
потом
|
258 |
+
почти
|
259 |
+
пятый
|
260 |
+
разве
|
261 |
+
рядом
|
262 |
+
самим
|
263 |
+
самих
|
264 |
+
самой
|
265 |
+
самом
|
266 |
+
своей
|
267 |
+
своих
|
268 |
+
сеаой
|
269 |
+
снова
|
270 |
+
собой
|
271 |
+
собою
|
272 |
+
такая
|
273 |
+
также
|
274 |
+
такие
|
275 |
+
такое
|
276 |
+
такой
|
277 |
+
тобой
|
278 |
+
тобою
|
279 |
+
тогда
|
280 |
+
тысяч
|
281 |
+
уметь
|
282 |
+
часто
|
283 |
+
через
|
284 |
+
чтобы
|
285 |
+
шесть
|
286 |
+
этими
|
287 |
+
этого
|
288 |
+
этому
|
289 |
+
близко
|
290 |
+
больше
|
291 |
+
будете
|
292 |
+
будешь
|
293 |
+
бывает
|
294 |
+
важная
|
295 |
+
важное
|
296 |
+
важные
|
297 |
+
важный
|
298 |
+
вокруг
|
299 |
+
восемь
|
300 |
+
всегда
|
301 |
+
второй
|
302 |
+
далеко
|
303 |
+
дальше
|
304 |
+
девять
|
305 |
+
десять
|
306 |
+
должно
|
307 |
+
другая
|
308 |
+
другие
|
309 |
+
других
|
310 |
+
другое
|
311 |
+
другой
|
312 |
+
занята
|
313 |
+
занято
|
314 |
+
заняты
|
315 |
+
значит
|
316 |
+
именно
|
317 |
+
иногда
|
318 |
+
каждая
|
319 |
+
каждое
|
320 |
+
каждые
|
321 |
+
каждый
|
322 |
+
кругом
|
323 |
+
меньше
|
324 |
+
начала
|
325 |
+
нельзя
|
326 |
+
нибудь
|
327 |
+
никуда
|
328 |
+
ничего
|
329 |
+
обычно
|
330 |
+
однако
|
331 |
+
одного
|
332 |
+
отсюда
|
333 |
+
первый
|
334 |
+
потому
|
335 |
+
почему
|
336 |
+
просто
|
337 |
+
против
|
338 |
+
раньше
|
339 |
+
самими
|
340 |
+
самого
|
341 |
+
самому
|
342 |
+
своего
|
343 |
+
сейчас
|
344 |
+
сказал
|
345 |
+
совсем
|
346 |
+
теперь
|
347 |
+
только
|
348 |
+
третий
|
349 |
+
хорошо
|
350 |
+
хотеть
|
351 |
+
хочешь
|
352 |
+
четыре
|
353 |
+
шестой
|
354 |
+
восьмой
|
355 |
+
впрочем
|
356 |
+
времени
|
357 |
+
говорил
|
358 |
+
говорит
|
359 |
+
девятый
|
360 |
+
десятый
|
361 |
+
кажется
|
362 |
+
конечно
|
363 |
+
которая
|
364 |
+
которой
|
365 |
+
которые
|
366 |
+
который
|
367 |
+
которых
|
368 |
+
наверху
|
369 |
+
наконец
|
370 |
+
недавно
|
371 |
+
немного
|
372 |
+
нередко
|
373 |
+
никогда
|
374 |
+
однажды
|
375 |
+
посреди
|
376 |
+
сегодня
|
377 |
+
седьмой
|
378 |
+
сказала
|
379 |
+
сказать
|
380 |
+
сколько
|
381 |
+
слишком
|
382 |
+
сначала
|
383 |
+
спасибо
|
384 |
+
человек
|
385 |
+
двадцать
|
386 |
+
довольно
|
387 |
+
которого
|
388 |
+
наиболее
|
389 |
+
недалеко
|
390 |
+
особенно
|
391 |
+
отовсюду
|
392 |
+
двадцатый
|
393 |
+
миллионов
|
394 |
+
несколько
|
395 |
+
прекрасно
|
396 |
+
процентов
|
397 |
+
четвертый
|
398 |
+
двенадцать
|
399 |
+
непрерывно
|
400 |
+
пожалуйста
|
401 |
+
пятнадцать
|
402 |
+
семнадцать
|
403 |
+
тринадцать
|
404 |
+
двенадцатый
|
405 |
+
одиннадцать
|
406 |
+
пятнадцатый
|
407 |
+
семнадцатый
|
408 |
+
тринадцатый
|
409 |
+
шестнадцать
|
410 |
+
восемнадцать
|
411 |
+
девятнадцать
|
412 |
+
одиннадцатый
|
413 |
+
четырнадцать
|
414 |
+
шестнадцатый
|
415 |
+
восемнадцатый
|
416 |
+
девятнадцатый
|
417 |
+
действительно
|
418 |
+
четырнадцатый
|
419 |
+
многочисленная
|
420 |
+
многочисленное
|
421 |
+
многочисленные
|
422 |
+
многочисленный
|
assets/skin.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a126206522807a286a19fe9a71717b181d24829a8db75f5353598594275fbfdf
|
3 |
+
size 558430117
|
assets/skin.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from torchvision.models import VGG19_BN_Weights, vgg19_bn
|
5 |
+
|
6 |
+
model =torch.load('assets/skin.pth')
|
7 |
+
#print(torch.load('assets/weights.pth'))
|
8 |
+
# model=vgg19_bn()
|
9 |
+
# print(torch.load('assets/model.pth'))
|
10 |
+
# model.load_state_dict(torch.load('assets/skin_cancer.pth'))
|
11 |
+
# print(model)
|
12 |
+
# torch.save(model.state_dict(), 'assets/skin_cancer.pth')
|
13 |
+
skin_map={0:'Добро',1:'Зло'}
|
14 |
+
def get_evil(img):
|
15 |
+
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.Resize((224, 224)), # Размер, ожидаемый VGG19_bn
|
18 |
+
transforms.ToTensor(),
|
19 |
+
])
|
20 |
+
|
21 |
+
input_image = transform(img).unsqueeze(0) # Добавьте размерность пакета (batch dimension)
|
22 |
+
|
23 |
+
device = 'cpu'
|
24 |
+
#torch.device("cuda" if torch.cuda.is_available() else 'cpu')
|
25 |
+
model.to(device)
|
26 |
+
model.eval()
|
27 |
+
input_image = input_image.to(device)
|
28 |
+
#model.to(device)
|
29 |
+
with torch.no_grad():
|
30 |
+
res=model(input_image).item()
|
31 |
+
return f'Степень злобы: {res}\n\n Т.е. опухоль: {skin_map[round(res)]}'
|
assets//320/226/320/265/320/275/321/217.jpg
ADDED