Spaces:
Runtime error
Runtime error
Shashidhar226
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,184 +6,185 @@ import requests
|
|
6 |
import torch
|
7 |
import torchvision
|
8 |
|
9 |
-
from langchain_google_genai import GoogleGenerativeAI
|
10 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
|
12 |
-
from langchain.prompts import PromptTemplate
|
13 |
-
from langchain.chains import LLMChain
|
14 |
-
from langchain.chat_models import ChatOpenAI
|
15 |
|
16 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
17 |
-
from huggingface_hub import hf_hub_download
|
18 |
|
19 |
-
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
20 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
21 |
import os
|
22 |
-
|
23 |
-
|
24 |
-
os.environ["
|
25 |
-
|
26 |
-
|
27 |
-
llm =
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
You
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
6 |
import torch
|
7 |
import torchvision
|
8 |
|
9 |
+
# from langchain_google_genai import GoogleGenerativeAI
|
10 |
+
# from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
|
12 |
+
# from langchain.prompts import PromptTemplate
|
13 |
+
# from langchain.chains import LLMChain
|
14 |
+
# from langchain.chat_models import ChatOpenAI
|
15 |
|
16 |
+
# from transformers import AutoProcessor, AutoModelForCausalLM
|
17 |
+
# from huggingface_hub import hf_hub_download
|
18 |
|
19 |
+
# from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
20 |
+
# from transformers import BlipProcessor, BlipForConditionalGeneration
|
21 |
import os
|
22 |
+
print(os.getenv('GOOGLE_API_KEY'))
|
23 |
+
|
24 |
+
# # os.environ["OPENAI_API_KEY"] = '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'
|
25 |
+
# os.environ["GOOGLE_API_KEY"] = 'AIzaSyAsZTv6rUZq0TAh6yfmVCDA0tPIcGU3VxA'
|
26 |
+
|
27 |
+
# # llm = ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo")
|
28 |
+
# llm = ChatGoogleGenerativeAI(temperature=0.2, model="gemini-pro")
|
29 |
+
|
30 |
+
# prompt = PromptTemplate(
|
31 |
+
# input_variables=["question", "elements"],
|
32 |
+
# template="""You are a helpful assistant that can answer question related to an image. You have the ability to see the image and answer questions about it.
|
33 |
+
# I will give you a question and element about the image and you will answer the question.
|
34 |
+
# \n\n
|
35 |
+
# #Question: {question}
|
36 |
+
# #Elements: {elements}
|
37 |
+
# \n\n
|
38 |
+
# Your structured response:""",
|
39 |
+
# )
|
40 |
+
|
41 |
+
# def convert_png_to_jpg(image):
|
42 |
+
# rgb_image = image.convert('RGB')
|
43 |
+
# byte_arr = BytesIO()
|
44 |
+
# rgb_image.save(byte_arr, format='JPEG')
|
45 |
+
# byte_arr.seek(0)
|
46 |
+
# return Image.open(byte_arr)
|
47 |
+
|
48 |
+
# def vilt(image, query):
|
49 |
+
# processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
50 |
+
# model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
|
51 |
+
# encoding = processor(image, query, return_tensors="pt")
|
52 |
+
# outputs = model(**encoding)
|
53 |
+
# logits = outputs.logits
|
54 |
+
# idx = logits.argmax(-1).item()
|
55 |
+
# sol = model.config.id2label[idx]
|
56 |
+
# return sol
|
57 |
+
|
58 |
+
# def blip(image, query):
|
59 |
+
# processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
60 |
+
# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
61 |
+
# # unconditional image captioning
|
62 |
+
# inputs = processor(image, return_tensors="pt")
|
63 |
+
|
64 |
+
# out = model.generate(**inputs)
|
65 |
+
# sol = processor.decode(out[0], skip_special_tokens=True)
|
66 |
+
# return sol
|
67 |
+
|
68 |
+
# def GIT(image, query):
|
69 |
+
# processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
|
70 |
+
# model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
|
71 |
+
|
72 |
+
# # file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
|
73 |
+
# # image = Image.open(file_path).convert("RGB")
|
74 |
+
|
75 |
+
# pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
76 |
+
|
77 |
+
# question = query
|
78 |
+
|
79 |
+
# input_ids = processor(text=question, add_special_tokens=False).input_ids
|
80 |
+
# input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
81 |
+
# input_ids = torch.tensor(input_ids).unsqueeze(0)
|
82 |
+
|
83 |
+
# generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
|
84 |
+
# response = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
85 |
+
|
86 |
+
# generated_ids_1 = model.generate(pixel_values=pixel_values, max_length=50)
|
87 |
+
# generated_caption = processor.batch_decode(generated_ids_1, skip_special_tokens=True)[0]
|
88 |
+
|
89 |
+
# return response[0] + " " + generated_caption
|
90 |
+
|
91 |
+
# @st.cache_data(show_spinner="Processing image...")
|
92 |
+
# def generate_table(uploaded_file):
|
93 |
+
# image = Image.open(uploaded_file)
|
94 |
+
# print("graph start")
|
95 |
+
# model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
|
96 |
+
# processor = Pix2StructProcessor.from_pretrained('google/deplot')
|
97 |
+
# print("graph start 1")
|
98 |
+
# inputs = processor(images=image, text="Generate underlying data table of the figure below and give the text as well:", return_tensors="pt")
|
99 |
+
# predictions = model.generate(**inputs, max_new_tokens=512)
|
100 |
+
# print("end")
|
101 |
+
# table = processor.decode(predictions[0], skip_special_tokens=True)
|
102 |
+
# print(table)
|
103 |
+
# return table
|
104 |
+
|
105 |
+
# def process_query(image, query):
|
106 |
+
# blip_sol = blip(image, query)
|
107 |
+
# vilt_sol = vilt(image, query)
|
108 |
+
# GIT_sol = GIT(image, query)
|
109 |
+
# llm_sol = blip_sol + " " + vilt_sol + " " + GIT_sol
|
110 |
+
# print(llm_sol)
|
111 |
+
# chain = LLMChain(llm=llm, prompt=prompt)
|
112 |
+
# response = chain.run(question=query, elements=llm_sol)
|
113 |
+
# return response
|
114 |
+
|
115 |
+
# def process_query_graph(data_table, query):
|
116 |
+
# prompt = PromptTemplate(
|
117 |
+
# input_variables=["question", "elements"],
|
118 |
+
# template="""You are a helpful assistant capable of answering questions related to graph images.
|
119 |
+
# You possess the ability to view the graph image and respond to inquiries about it.
|
120 |
+
# I will provide you with a question and the associated data table of the graph, and you will answer the question
|
121 |
+
# \n\n
|
122 |
+
# #Question: {question}
|
123 |
+
# #Elements: {elements}
|
124 |
+
# \n\n
|
125 |
+
# Your structured response:""",
|
126 |
+
# )
|
127 |
+
# chain = LLMChain(llm=llm, prompt=prompt)
|
128 |
+
# response = chain.run(question=query, elements=data_table)
|
129 |
+
# return response
|
130 |
+
|
131 |
+
# def chart_with_Image():
|
132 |
+
# st.header("Chat with Image", divider='rainbow')
|
133 |
+
# uploaded_file = st.file_uploader('Upload your IMAGE', type=['png', 'jpeg', 'jpg'], key="imageUploader")
|
134 |
+
# if uploaded_file is not None:
|
135 |
+
# image = Image.open(uploaded_file)
|
136 |
+
|
137 |
+
# # ViLT model only supports JPG images
|
138 |
+
# if image.format == 'PNG':
|
139 |
+
# image = convert_png_to_jpg(image)
|
140 |
+
|
141 |
+
# st.image(image, caption='Uploaded Image.', width=300)
|
142 |
+
|
143 |
+
# cancel_button = st.button('Cancel')
|
144 |
+
# query = st.text_input('Ask a question to the IMAGE')
|
145 |
+
|
146 |
+
# if query:
|
147 |
+
# with st.spinner('Processing...'):
|
148 |
+
# answer = process_query(image, query)
|
149 |
+
# st.write(answer)
|
150 |
+
|
151 |
+
# if cancel_button:
|
152 |
+
# st.stop()
|
153 |
+
|
154 |
+
# def chat_with_graph():
|
155 |
+
# st.header("Chat with Graph", divider='rainbow')
|
156 |
+
# uploaded_file = st.file_uploader('Upload your GRAPH', type=['png', 'jpeg', 'jpg'], key="graphUploader")
|
157 |
+
|
158 |
+
# if uploaded_file is not None:
|
159 |
+
# image = Image.open(uploaded_file)
|
160 |
+
|
161 |
+
# # if image.format == 'PNG':
|
162 |
+
# # image = convert_png_to_jpg(image)
|
163 |
+
|
164 |
+
# # data_table = generate_table(uploaded_file)
|
165 |
+
|
166 |
+
# st.image(image, caption='Uploaded Image.')
|
167 |
+
# data_table = generate_table(uploaded_file)
|
168 |
+
# cancel_button = st.button('Cancel')
|
169 |
+
# query = st.text_input('Ask a question to the IMAGE')
|
170 |
+
# if query:
|
171 |
+
# with st.spinner('Processing...'):
|
172 |
+
# answer = process_query_graph(data_table, query)
|
173 |
+
# st.write(answer)
|
174 |
+
|
175 |
+
# if cancel_button:
|
176 |
+
# st.stop()
|
177 |
+
|
178 |
+
# st.title("Image Querying App ")
|
179 |
+
# option = st.selectbox(
|
180 |
+
# "Who would you like to chart with?",
|
181 |
+
# ("Image", "Graph"),
|
182 |
+
# index=None,
|
183 |
+
# placeholder="Select contact method...",
|
184 |
+
# )
|
185 |
+
|
186 |
+
# st.write('You selected:', option)
|
187 |
+
# if option == "Image":
|
188 |
+
# chart_with_Image()
|
189 |
+
# elif option == "Graph":
|
190 |
+
# chat_with_graph()
|