Spaces:
Runtime error
Runtime error
import streamlit as st | |
from io import BytesIO | |
from PIL import Image | |
from transformers import ViltProcessor, ViltForQuestionAnswering | |
import requests | |
import torch | |
import torchvision | |
from langchain_google_genai import GoogleGenerativeAI | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain.chat_models import ChatOpenAI | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from huggingface_hub import hf_hub_download | |
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
import os | |
# os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY') | |
os.environ["GOOGLE_API_KEY"] = os.getenv('GOOGLE_API_KEY') | |
# llm = ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo") | |
llm = ChatGoogleGenerativeAI(temperature=0.2, model="gemini-pro") | |
prompt = PromptTemplate( | |
input_variables=["question", "elements"], | |
template="""You are a helpful assistant that can answer question related to an image. You have the ability to see the image and answer questions about it. | |
I will give you a question and element about the image and you will answer the question. | |
\n\n | |
#Question: {question} | |
#Elements: {elements} | |
\n\n | |
Your structured response:""", | |
) | |
def convert_png_to_jpg(image): | |
rgb_image = image.convert('RGB') | |
byte_arr = BytesIO() | |
rgb_image.save(byte_arr, format='JPEG') | |
byte_arr.seek(0) | |
return Image.open(byte_arr) | |
def vilt(image, query): | |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
encoding = processor(image, query, return_tensors="pt") | |
outputs = model(**encoding) | |
logits = outputs.logits | |
idx = logits.argmax(-1).item() | |
sol = model.config.id2label[idx] | |
return sol | |
def blip(image, query): | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
# unconditional image captioning | |
inputs = processor(image, return_tensors="pt") | |
out = model.generate(**inputs) | |
sol = processor.decode(out[0], skip_special_tokens=True) | |
return sol | |
def GIT(image, query): | |
processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa") | |
# file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") | |
# image = Image.open(file_path).convert("RGB") | |
pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
question = query | |
input_ids = processor(text=question, add_special_tokens=False).input_ids | |
input_ids = [processor.tokenizer.cls_token_id] + input_ids | |
input_ids = torch.tensor(input_ids).unsqueeze(0) | |
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) | |
response = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
generated_ids_1 = model.generate(pixel_values=pixel_values, max_length=50) | |
generated_caption = processor.batch_decode(generated_ids_1, skip_special_tokens=True)[0] | |
return response[0] + " " + generated_caption | |
def generate_table(uploaded_file): | |
image = Image.open(uploaded_file) | |
print("graph start") | |
model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot') | |
processor = Pix2StructProcessor.from_pretrained('google/deplot') | |
print("graph start 1") | |
inputs = processor(images=image, text="Generate underlying data table of the figure below and give the text as well:", return_tensors="pt") | |
predictions = model.generate(**inputs, max_new_tokens=512) | |
print("end") | |
table = processor.decode(predictions[0], skip_special_tokens=True) | |
print(table) | |
return table | |
def process_query(image, query): | |
blip_sol = blip(image, query) | |
vilt_sol = vilt(image, query) | |
GIT_sol = GIT(image, query) | |
llm_sol = blip_sol + " " + vilt_sol + " " + GIT_sol | |
print(llm_sol) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
response = chain.run(question=query, elements=llm_sol) | |
return response | |
def process_query_graph(data_table, query): | |
prompt = PromptTemplate( | |
input_variables=["question", "elements"], | |
template="""You are a helpful assistant capable of answering questions related to graph images. | |
You possess the ability to view the graph image and respond to inquiries about it. | |
I will provide you with a question and the associated data table of the graph, and you will answer the question | |
\n\n | |
#Question: {question} | |
#Elements: {elements} | |
\n\n | |
Your structured response:""", | |
) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
response = chain.run(question=query, elements=data_table) | |
return response | |
def chart_with_Image(): | |
st.header("Chat with Image", divider='rainbow') | |
uploaded_file = st.file_uploader('Upload your IMAGE', type=['png', 'jpeg', 'jpg'], key="imageUploader") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
# ViLT model only supports JPG images | |
if image.format == 'PNG': | |
image = convert_png_to_jpg(image) | |
st.image(image, caption='Uploaded Image.', width=300) | |
cancel_button = st.button('Cancel') | |
query = st.text_input('Ask a question to the IMAGE') | |
if query: | |
with st.spinner('Processing...'): | |
answer = process_query(image, query) | |
st.write(answer) | |
if cancel_button: | |
st.stop() | |
def chat_with_graph(): | |
st.header("Chat with Graph", divider='rainbow') | |
uploaded_file = st.file_uploader('Upload your GRAPH', type=['png', 'jpeg', 'jpg'], key="graphUploader") | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
if image.format == 'PNG': | |
image = convert_png_to_jpg(image) | |
# data_table = generate_table(uploaded_file) | |
st.image(image, caption='Uploaded Image.') | |
data_table = generate_table(uploaded_file) | |
cancel_button = st.button('Cancel') | |
query = st.text_input('Ask a question to the IMAGE') | |
if query: | |
with st.spinner('Processing...'): | |
answer = process_query_graph(data_table, query) | |
st.write(answer) | |
if cancel_button: | |
st.stop() | |
st.title("VisionQuery") | |
option = st.selectbox( | |
"Who would you like to chart with?", | |
("Image", "Graph"), | |
index=None, | |
placeholder="Select contact method...", | |
) | |
st.write('You selected:', option) | |
if option == "Image": | |
chart_with_Image() | |
elif option == "Graph": | |
chat_with_graph() |