SharleyK commited on
Commit
18495da
·
verified ·
1 Parent(s): a958689

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. Dockerfile +3 -1
  2. README.md +14 -2
  3. app.py +2 -4
  4. deploy.py +30 -0
  5. requirements.txt +0 -2
Dockerfile CHANGED
@@ -1,8 +1,10 @@
1
-
2
  FROM python:3.10-slim
 
3
  WORKDIR /app
4
  COPY requirements.txt .
5
  RUN pip install --no-cache-dir -r requirements.txt
 
6
  COPY app.py .
 
7
  EXPOSE 7860
8
  CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
 
 
1
  FROM python:3.10-slim
2
+
3
  WORKDIR /app
4
  COPY requirements.txt .
5
  RUN pip install --no-cache-dir -r requirements.txt
6
+
7
  COPY app.py .
8
+
9
  EXPOSE 7860
10
  CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0"]
README.md CHANGED
@@ -1,6 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
1
 
2
- # Predictive Maintenance - Engine Failure Prediction
3
 
4
- Streamlit application deployed on Hugging Face Spaces.
5
 
6
  Author: Sharley Kulkarni
 
 
1
+ ---
2
+ ---
3
+ title: Predictive Maintenance
4
+ emoji: 🔧
5
+ colorFrom: blue
6
+ colorTo: green
7
+ sdk: docker
8
+ python_version: "3.10"
9
+ app_file: app.py
10
+ pinned: false
11
+ ---
12
 
13
+ ## Predictive Maintenance Engine Failure Prediction
14
 
15
+ Streamlit app deployed on **Hugging Face Spaces** using Docker.
16
 
17
  Author: Sharley Kulkarni
18
+
app.py CHANGED
@@ -1,7 +1,5 @@
1
-
2
  import streamlit as st
3
  import pandas as pd
4
- import numpy as np
5
  import joblib
6
  from huggingface_hub import hf_hub_download
7
 
@@ -36,9 +34,9 @@ if st.button("Predict"):
36
  }])
37
 
38
  X_scaled = scaler.transform(X)
39
- prediction = model.predict(X_scaled)[0]
40
 
41
- if prediction == 1:
42
  st.error("Engine Failure Detected")
43
  else:
44
  st.success("Engine Operating Normally")
 
 
1
  import streamlit as st
2
  import pandas as pd
 
3
  import joblib
4
  from huggingface_hub import hf_hub_download
5
 
 
34
  }])
35
 
36
  X_scaled = scaler.transform(X)
37
+ pred = model.predict(X_scaled)[0]
38
 
39
+ if pred == 1:
40
  st.error("Engine Failure Detected")
41
  else:
42
  st.success("Engine Operating Normally")
deploy.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi, login
2
+ import os
3
+
4
+ HF_USERNAME = "SharleyK"
5
+ SPACE_NAME = "PredictiveMaintenance"
6
+ HF_TOKEN = os.getenv("HF_TOKEN")
7
+
8
+ if not HF_TOKEN:
9
+ raise RuntimeError("HF_TOKEN environment variable not set")
10
+
11
+ login(token=HF_TOKEN)
12
+ api = HfApi()
13
+
14
+ repo_id = f"{HF_USERNAME}/{SPACE_NAME}"
15
+
16
+ api.create_repo(
17
+ repo_id=repo_id,
18
+ repo_type="space",
19
+ space_sdk="docker",
20
+ exist_ok=True
21
+ )
22
+
23
+ api.upload_folder(
24
+ folder_path=".",
25
+ repo_id=repo_id,
26
+ repo_type="space"
27
+ )
28
+
29
+ print("Deployment successful!")
30
+ print(f"https://huggingface.co/spaces/{HF_USERNAME}/{SPACE_NAME}")
requirements.txt CHANGED
@@ -1,8 +1,6 @@
1
-
2
  streamlit
3
  pandas
4
  numpy
5
  scikit-learn
6
  joblib
7
  huggingface-hub
8
- sdk: docker
 
 
1
  streamlit
2
  pandas
3
  numpy
4
  scikit-learn
5
  joblib
6
  huggingface-hub