Shanulhaq's picture
Update app.py
c81d3c9 verified
raw
history blame
7.36 kB
import streamlit as st
import google.generativeai as genai
import whisper
from gtts import gTTS
import tempfile
import os
import logging
import numpy as np
from pydub import AudioSegment
from groq import Groq, GroqError
import gradio as gr
# Securely configure API Key (set this in the deployment environment)
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=GOOGLE_API_KEY)
# Set up Groq API key
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY is not set.")
try:
groq_client = Groq(api_key=GROQ_API_KEY)
except GroqError as e:
raise ValueError(f"Failed to initialize Groq client: {e}")
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Whisper Model
try:
whisper_model = whisper.load_model("base")
logger.info("Whisper model loaded successfully.")
except Exception as e:
logger.error(f"Failed to load Whisper model: {e}")
raise
# Initialize the Generative Model
model = genai.GenerativeModel(
'gemini-1.5-flash',
system_instruction=(
"Persona: You are Dr. Assad Siddiqui, a heart specialist. Only provide information related to heart health, symptoms, and advice. "
"Ask users about their heart-related symptoms and provide consultation and guidance based on their input. "
"Always provide brief answers. If the inquiry is not related to heart health, politely say that you can only provide heart-related information. "
"Responses should be in Urdu written in English and in English."
)
)
# Function to process audio
def process_audio(audio_file):
try:
# Transcribe audio using Whisper
result = whisper_model.transcribe(audio_file)
user_text = result['text']
logger.info(f"Transcription successful: {user_text}")
except Exception as e:
logger.error(f"Error in transcribing audio: {e}")
return "Error in transcribing audio.", None
try:
# Generate response using Groq API
chat_completion = groq_client.chat.completions.create(
messages=[
{"role": "user", "content": user_text}
],
model="llama3-8b-8192",
)
response_text = chat_completion.choices[0].message.content
logger.info(f"Received response from Groq API: {response_text}")
except GroqError as e:
logger.error(f"Error in generating response with Groq API: {e}")
return "Error in generating response with Groq API.", None
try:
# Convert response text to speech using gTTS
tts = gTTS(text=response_text, lang='en')
audio_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
tts.save(audio_file.name)
logger.info("Text-to-speech conversion successful.")
except Exception as e:
logger.error(f"Error in text-to-speech conversion: {e}")
return "Error in text-to-speech conversion.", None
return response_text, audio_file.name
# Streamlit page configuration
st.set_page_config(
page_title="Heart Health Chatbot",
page_icon="πŸ‘¨β€βš•οΈ",
layout="centered",
initial_sidebar_state="collapsed",
)
# Background image and custom CSS
st.markdown("""
<style>
.stApp {
background-image: url('https://cdn.wallpapersafari.com/29/34/8Ak1Sf.png');
background-size: cover;
background-position: center;
background-attachment: fixed;
}
.chat-bubble {
background-color: #128c7E;
color: white;
padding: 10px;
border-radius: 10px;
max-width: 70%;
}
.user-bubble {
background-color: #075e54;
color: white;
padding: 10px;
border-radius: 10px;
max-width: 70%;
align-self: flex-end;
}
img.avatar {
width: 50px;
height: 50px;
border-radius: 50%;
}
</style>
""", unsafe_allow_html=True)
# Load and display a custom header
def load_header():
st.markdown("""
<div style="padding:10px;text-align:center;color:white;">
<h1>Heart Health Chatbot πŸ«€</h1>
<p>Ask me anything about heart diseases!</p>
</div>
""", unsafe_allow_html=True)
# Initialize session state for chat history
if "history" not in st.session_state:
st.session_state.history = []
user_avatar_url = "https://img.freepik.com/free-photo/sad-cartoon-anatomical-heart_23-2149767987.jpg?t=st=1725263300~exp=1725266900~hmac=3763e175a896a554720d54c6d774dc645dd73078c952913accec719977d50b48&w=740"
bot_avatar_url = "https://img.freepik.com/premium-photo/3d-render-man-doctor-avatar-round-sticker-with-cartoon-character-face-user-id-thumbnail-modern-69_1181551-3160.jpg?w=740"
# Function to display chat history
def display_chat_history():
for chat in st.session_state.history:
if chat["role"] == "user":
st.markdown(f"""
<div style="display: flex; justify-content: flex-end; align-items: center; margin-bottom: 10px;">
<div class="user-bubble">
<p><b>You:</b> {chat['content']}</p>
</div>
<img src="{user_avatar_url}" class="avatar"/>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div style="display: flex; align-items: center; margin-bottom: 10px;">
<img src="{bot_avatar_url}" class="avatar">
<div class="chat-bubble">
<p><b>Bot:</b> {chat['content']}</p>
</div>
</div>
""", unsafe_allow_html=True)
# Main application layout
def main():
load_header()
st.write("") # Add spacing
with st.container():
display_chat_history()
# User input area for text
with st.form(key="user_input_form", clear_on_submit=True):
user_input = st.text_input(
label="Type your message...",
placeholder="Ask about heart health...",
max_chars=500
)
submit_button = st.form_submit_button(label="Send")
if submit_button and user_input.strip():
with st.spinner("Thinking..."):
bot_response = get_chatbot_response(user_input)
# Update chat history
st.session_state.history.append({"role": "user", "content": user_input})
st.session_state.history.append({"role": "bot", "content": bot_response})
# Refresh chat display
display_chat_history()
# Audio upload section
st.markdown("### Upload your audio for consultation")
uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg"])
if uploaded_audio:
st.audio(uploaded_audio)
with st.spinner("Processing audio..."):
response_text, response_audio = process_audio(uploaded_audio)
if response_text:
st.markdown(f"**Response Text:** {response_text}")
st.audio(response_audio)
# Run the app
if __name__ == "__main__":
main()