Spaces:
Runtime error
Runtime error
from typing import Union | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import subprocess | |
import librosa | |
import os | |
import time | |
import random | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
from moviepy.editor import * | |
from moviepy.video.io.VideoFileClip import VideoFileClip | |
import asyncio | |
import json | |
import hashlib | |
from os import path, getenv | |
from pydub import AudioSegment | |
import gradio as gr | |
import torch | |
import edge_tts | |
from datetime import datetime | |
from scipy.io.wavfile import write | |
import config | |
import util | |
from infer_pack.models import ( | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono | |
) | |
from vc_infer_pipeline import VC | |
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa | |
in_hf_space = getenv('SYSTEM') == 'spaces' | |
high_quality = True | |
# Argument parsing | |
arg_parser = ArgumentParser() | |
arg_parser.add_argument( | |
'--hubert', | |
default=getenv('RVC_HUBERT', 'hubert_base.pt'), | |
help='path to hubert base model (default: hubert_base.pt)' | |
) | |
arg_parser.add_argument( | |
'--config', | |
default=getenv('RVC_MULTI_CFG', 'multi_config.json'), | |
help='path to config file (default: multi_config.json)' | |
) | |
arg_parser.add_argument( | |
'--api', | |
action='store_true', | |
help='enable api endpoint' | |
) | |
arg_parser.add_argument( | |
'--cache-examples', | |
action='store_true', | |
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa | |
) | |
args = arg_parser.parse_args() | |
app_css = ''' | |
#model_info img { | |
max-width: 100px; | |
max-height: 100px; | |
float: right; | |
} | |
#model_info p { | |
margin: unset; | |
} | |
''' | |
app = gr.Blocks( | |
theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"), | |
css=app_css, | |
analytics_enabled=False | |
) | |
# Load hubert model | |
hubert_model = util.load_hubert_model(config.device, args.hubert) | |
hubert_model.eval() | |
# Load models | |
multi_cfg = json.load(open(args.config, 'r')) | |
loaded_models = [] | |
for model_name in multi_cfg.get('models'): | |
print(f'Loading model: {model_name}') | |
# Load model info | |
model_info = json.load( | |
open(path.join('model', model_name, 'config.json'), 'r') | |
) | |
# Load RVC checkpoint | |
cpt = torch.load( | |
path.join('model', model_name, model_info['model']), | |
map_location='cpu' | |
) | |
tgt_sr = cpt['config'][-1] | |
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk | |
if_f0 = cpt.get('f0', 1) | |
net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono] | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid( | |
*cpt['config'], | |
is_half=util.is_half(config.device) | |
) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config']) | |
del net_g.enc_q | |
# According to original code, this thing seems necessary. | |
print(net_g.load_state_dict(cpt['weight'], strict=False)) | |
net_g.eval().to(config.device) | |
net_g = net_g.half() if util.is_half(config.device) else net_g.float() | |
vc = VC(tgt_sr, config) | |
loaded_models.append(dict( | |
name=model_name, | |
metadata=model_info, | |
vc=vc, | |
net_g=net_g, | |
if_f0=if_f0, | |
target_sr=tgt_sr | |
)) | |
print(f'Models loaded: {len(loaded_models)}') | |
# Edge TTS speakers | |
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # noqa | |
# Make MV | |
def make_bars_image(height_values, index, new_height): | |
# Define the size of the image | |
width = 512 | |
height = new_height | |
# Create a new image with a transparent background | |
image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0)) | |
# Get the image drawing context | |
draw = ImageDraw.Draw(image) | |
# Define the rectangle width and spacing | |
rect_width = 2 | |
spacing = 2 | |
# Define the list of height values for the rectangles | |
#height_values = [20, 40, 60, 80, 100, 80, 60, 40] | |
num_bars = len(height_values) | |
# Calculate the total width of the rectangles and the spacing | |
total_width = num_bars * rect_width + (num_bars - 1) * spacing | |
# Calculate the starting position for the first rectangle | |
start_x = int((width - total_width) / 2) | |
# Define the buffer size | |
buffer_size = 80 | |
# Draw the rectangles from left to right | |
x = start_x | |
for i, height in enumerate(height_values): | |
# Define the rectangle coordinates | |
y0 = buffer_size | |
y1 = height + buffer_size | |
x0 = x | |
x1 = x + rect_width | |
# Draw the rectangle | |
draw.rectangle([x0, y0, x1, y1], fill='white') | |
# Move to the next rectangle position | |
if i < num_bars - 1: | |
x += rect_width + spacing | |
# Rotate the image by 180 degrees | |
image = image.rotate(180) | |
# Mirror the image | |
image = image.transpose(Image.FLIP_LEFT_RIGHT) | |
# Save the image | |
image.save('audio_bars_'+ str(index) + '.png') | |
return 'audio_bars_'+ str(index) + '.png' | |
def db_to_height(db_value): | |
# Scale the dB value to a range between 0 and 1 | |
scaled_value = (db_value + 80) / 80 | |
# Convert the scaled value to a height between 0 and 100 | |
height = scaled_value * 50 | |
return height | |
def infer(title, audio_in, image_in): | |
# Load the audio file | |
audio_path = audio_in | |
audio_data, sr = librosa.load(audio_path) | |
# Get the duration in seconds | |
duration = librosa.get_duration(y=audio_data, sr=sr) | |
# Extract the audio data for the desired time | |
start_time = 0 # start time in seconds | |
end_time = duration # end time in seconds | |
start_index = int(start_time * sr) | |
end_index = int(end_time * sr) | |
audio_data = audio_data[start_index:end_index] | |
# Compute the short-time Fourier transform | |
hop_length = 512 | |
stft = librosa.stft(audio_data, hop_length=hop_length) | |
spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max) | |
# Get the frequency values | |
freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0]) | |
# Select the indices of the frequency values that correspond to the desired frequencies | |
n_freqs = 114 | |
freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int) | |
# Extract the dB values for the desired frequencies | |
db_values = [] | |
for i in range(spectrogram.shape[1]): | |
db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i]))) | |
# Print the dB values for the first time frame | |
print(db_values[0]) | |
proportional_values = [] | |
for frame in db_values: | |
proportional_frame = [db_to_height(db) for f, db in frame] | |
proportional_values.append(proportional_frame) | |
print(proportional_values[0]) | |
print("AUDIO CHUNK: " + str(len(proportional_values))) | |
# Open the background image | |
background_image = Image.open(image_in) | |
# Resize the image while keeping its aspect ratio | |
bg_width, bg_height = background_image.size | |
aspect_ratio = bg_width / bg_height | |
new_width = 512 | |
new_height = int(new_width / aspect_ratio) | |
resized_bg = background_image.resize((new_width, new_height)) | |
# Apply black cache for better visibility of the white text | |
bg_cache = Image.open('black_cache.png') | |
resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache) | |
# Create a new ImageDraw object | |
draw = ImageDraw.Draw(resized_bg) | |
# Define the text to be added | |
text = title | |
font = ImageFont.truetype("Lato-Regular.ttf", 16) | |
text_color = (255, 255, 255) # white color | |
# Calculate the position of the text | |
text_width, text_height = draw.textsize(text, font=font) | |
x = 30 | |
y = new_height - 70 | |
# Draw the text on the image | |
draw.text((x, y), text, fill=text_color, font=font) | |
# Save the resized image | |
resized_bg.save('resized_background.jpg') | |
generated_frames = [] | |
for i, frame in enumerate(proportional_values): | |
bars_img = make_bars_image(frame, i, new_height) | |
bars_img = Image.open(bars_img) | |
# Paste the audio bars image on top of the background image | |
fresh_bg = Image.open('resized_background.jpg') | |
fresh_bg.paste(bars_img, (0, 0), mask=bars_img) | |
# Save the image | |
fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg') | |
generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg') | |
print(generated_frames) | |
# Create a video clip from the images | |
clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time)) | |
audio_clip = AudioFileClip(audio_in) | |
clip = clip.set_audio(audio_clip) | |
# Set the output codec | |
codec = 'libx264' | |
audio_codec = 'aac' | |
# Save the video to a file | |
clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec) | |
retimed_clip = VideoFileClip("my_video.mp4") | |
# Set the desired frame rate | |
new_fps = 25 | |
# Create a new clip with the new frame rate | |
new_clip = retimed_clip.set_fps(new_fps) | |
# Save the new clip as a new video file | |
new_clip.write_videofile("my_video_retimed.mp4", codec=codec, audio_codec=audio_codec) | |
return "my_video_retimed.mp4" | |
# mix vocal and non-vocal | |
def mix(audio1, audio2): | |
sound1 = AudioSegment.from_file(audio1) | |
sound2 = AudioSegment.from_file(audio2) | |
length = len(sound1) | |
mixed = sound1[:length].overlay(sound2) | |
mixed.export("song.wav", format="wav") | |
return "song.wav" | |
# Bilibili | |
def youtube_downloader( | |
video_identifier, | |
start_time, | |
end_time, | |
output_filename="track.wav", | |
num_attempts=5, | |
url_base="", | |
quiet=False, | |
force=True, | |
): | |
output_path = Path(output_filename) | |
if output_path.exists(): | |
if not force: | |
return output_path | |
else: | |
output_path.unlink() | |
quiet = "--quiet --no-warnings" if quiet else "" | |
command = f""" | |
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 | |
""".strip() | |
attempts = 0 | |
while True: | |
try: | |
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) | |
except subprocess.CalledProcessError: | |
attempts += 1 | |
if attempts == num_attempts: | |
return None | |
else: | |
break | |
if output_path.exists(): | |
return output_path | |
else: | |
return None | |
def audio_separated(audio_input, progress=gr.Progress()): | |
# start progress | |
progress(progress=0, desc="Starting...") | |
time.sleep(0.1) | |
# check file input | |
if audio_input is None: | |
# show progress | |
for i in progress.tqdm(range(100), desc="Please wait..."): | |
time.sleep(0.01) | |
return (None, None, 'Please input audio.') | |
# create filename | |
filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S") | |
# progress | |
progress(progress=0.10, desc="Please wait...") | |
# make dir output | |
os.makedirs("output", exist_ok=True) | |
# progress | |
progress(progress=0.20, desc="Please wait...") | |
# write | |
if high_quality: | |
write(filename+".wav", audio_input[0], audio_input[1]) | |
else: | |
write(filename+".mp3", audio_input[0], audio_input[1]) | |
# progress | |
progress(progress=0.50, desc="Please wait...") | |
# demucs process | |
if high_quality: | |
command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output" | |
else: | |
command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output" | |
os.system(command_demucs) | |
# progress | |
progress(progress=0.70, desc="Please wait...") | |
# remove file audio | |
if high_quality: | |
command_delete = "rm -v ./"+filename+".wav" | |
else: | |
command_delete = "rm -v ./"+filename+".mp3" | |
os.system(command_delete) | |
# progress | |
progress(progress=0.80, desc="Please wait...") | |
# progress | |
for i in progress.tqdm(range(80,100), desc="Please wait..."): | |
time.sleep(0.1) | |
if high_quality: | |
return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..." | |
else: | |
return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..." | |
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa | |
def vc_func( | |
input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
filter_radius, rms_mix_rate, resample_option | |
): | |
if input_audio is None: | |
return (None, 'Please provide input audio.') | |
if model_index is None: | |
return (None, 'Please select a model.') | |
model = loaded_models[model_index] | |
# Reference: so-vits | |
(audio_samp, audio_npy) = input_audio | |
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49 | |
# Can be change well, we will see | |
if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space: | |
return (None, 'Input audio is longer than 60 secs.') | |
# Bloody hell: https://stackoverflow.com/questions/26921836/ | |
if audio_npy.dtype != np.float32: # :thonk: | |
audio_npy = ( | |
audio_npy / np.iinfo(audio_npy.dtype).max | |
).astype(np.float32) | |
if len(audio_npy.shape) > 1: | |
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0)) | |
if audio_samp != 16000: | |
audio_npy = librosa.resample( | |
audio_npy, | |
orig_sr=audio_samp, | |
target_sr=16000 | |
) | |
pitch_int = int(pitch_adjust) | |
resample = ( | |
0 if resample_option == 'Disable resampling' | |
else int(resample_option) | |
) | |
times = [0, 0, 0] | |
checksum = hashlib.sha512() | |
checksum.update(audio_npy.tobytes()) | |
output_audio = model['vc'].pipeline( | |
hubert_model, | |
model['net_g'], | |
model['metadata'].get('speaker_id', 0), | |
audio_npy, | |
checksum.hexdigest(), | |
times, | |
pitch_int, | |
f0_method, | |
path.join('model', model['name'], model['metadata']['feat_index']), | |
feat_ratio, | |
model['if_f0'], | |
filter_radius, | |
model['target_sr'], | |
resample, | |
rms_mix_rate, | |
'v2' | |
) | |
out_sr = ( | |
resample if resample >= 16000 and model['target_sr'] != resample | |
else model['target_sr'] | |
) | |
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s') | |
return ((out_sr, output_audio), 'Success') | |
async def edge_tts_vc_func( | |
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio, | |
filter_radius, rms_mix_rate, resample_option | |
): | |
if input_text is None: | |
return (None, 'Please provide TTS text.') | |
if tts_speaker is None: | |
return (None, 'Please select TTS speaker.') | |
if model_index is None: | |
return (None, 'Please select a model.') | |
speaker = tts_speakers_list[tts_speaker]['ShortName'] | |
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text) | |
return vc_func( | |
(tts_sr, tts_np), | |
model_index, | |
pitch_adjust, | |
f0_method, | |
feat_ratio, | |
filter_radius, | |
rms_mix_rate, | |
resample_option | |
) | |
def update_model_info(model_index): | |
if model_index is None: | |
return str( | |
'### Model info\n' | |
'Please select a model from dropdown above.' | |
) | |
model = loaded_models[model_index] | |
model_icon = model['metadata'].get('icon', '') | |
return str( | |
'### Model info\n' | |
'![model icon]({icon})' | |
'**{name}**\n\n' | |
'Author: {author}\n\n' | |
'Source: {source}\n\n' | |
'{note}' | |
).format( | |
name=model['metadata'].get('name'), | |
author=model['metadata'].get('author', 'Anonymous'), | |
source=model['metadata'].get('source', 'Unknown'), | |
note=model['metadata'].get('note', ''), | |
icon=( | |
model_icon | |
if model_icon.startswith(('http://', 'https://')) | |
else '/file/model/%s/%s' % (model['name'], model_icon) | |
) | |
) | |
def _example_vc( | |
input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
filter_radius, rms_mix_rate, resample_option | |
): | |
(audio, message) = vc_func( | |
input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
filter_radius, rms_mix_rate, resample_option | |
) | |
return ( | |
audio, | |
message, | |
update_model_info(model_index) | |
) | |
async def _example_edge_tts( | |
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio, | |
filter_radius, rms_mix_rate, resample_option | |
): | |
(audio, message) = await edge_tts_vc_func( | |
input_text, model_index, tts_speaker, pitch_adjust, f0_method, | |
feat_ratio, filter_radius, rms_mix_rate, resample_option | |
) | |
return ( | |
audio, | |
message, | |
update_model_info(model_index) | |
) | |
with app: | |
gr.HTML("<center>" | |
"<h1>🥳🎶🎡 - AI歌手,RVC歌声转换 + AI变声</h1>" | |
"</center>") | |
gr.Markdown("### <center>🦄 - 能够自动提取视频中的声音,并去除背景音;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>") | |
gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>") | |
with gr.Tab("🤗 - B站视频提取声音"): | |
with gr.Row(): | |
with gr.Column(): | |
ydl_url_input = gr.Textbox(label="B站视频网址(请填写相应的BV号)", value = "https://www.bilibili.com/video/BV...") | |
start = gr.Number(value=0, label="起始时间 (秒)") | |
end = gr.Number(value=15, label="结束时间 (秒)") | |
ydl_url_submit = gr.Button("提取声音文件吧", variant="primary") | |
as_audio_submit = gr.Button("去除背景音吧", variant="primary") | |
with gr.Column(): | |
ydl_audio_output = gr.Audio(label="Audio from Bilibili") | |
as_audio_input = ydl_audio_output | |
as_audio_vocals = gr.Audio(label="歌曲人声部分") | |
as_audio_no_vocals = gr.Audio(label="Music only", type="filepath", visible=False) | |
as_audio_message = gr.Textbox(label="Message", visible=False) | |
ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end], outputs=[ydl_audio_output]) | |
as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab('🎶 - 歌声转换'): | |
input_audio = as_audio_vocals | |
vc_convert_btn = gr.Button('进行歌声转换吧!', variant='primary') | |
full_song = gr.Button("加入歌曲伴奏吧!", variant="primary") | |
new_song = gr.Audio(label="AI歌手+伴奏", type="filepath") | |
with gr.Tab('🎙️ - 文本转语音'): | |
tts_input = gr.Textbox( | |
label='请填写您想要转换的文本(中英皆可)', | |
lines=3 | |
) | |
tts_speaker = gr.Dropdown( | |
[ | |
'%s (%s)' % ( | |
s['FriendlyName'], | |
s['Gender'] | |
) | |
for s in tts_speakers_list | |
], | |
label='请选择一个相应语言的说话人', | |
type='index' | |
) | |
tts_convert_btn = gr.Button('进行AI变声吧', variant='primary') | |
with gr.Tab("📺 - 音乐视频"): | |
with gr.Row(): | |
with gr.Column(): | |
inp1 = gr.Textbox(label="为视频配上精彩的文案吧(选填;英文)") | |
inp2 = new_song | |
inp3 = gr.Image(source='upload', type='filepath', label="上传一张背景图片吧") | |
btn = gr.Button("生成您的专属音乐视频吧", variant="primary") | |
with gr.Column(): | |
out1 = gr.Video(label='您的专属音乐视频') | |
btn.click(fn=infer, inputs=[inp1, inp2, inp3], outputs=[out1]) | |
pitch_adjust = gr.Slider( | |
label='Pitch', | |
minimum=-24, | |
maximum=24, | |
step=1, | |
value=0 | |
) | |
f0_method = gr.Radio( | |
label='f0 methods', | |
choices=['pm', 'harvest'], | |
value='pm', | |
interactive=True | |
) | |
with gr.Accordion('更多设置', open=False): | |
feat_ratio = gr.Slider( | |
label='Feature ratio', | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.6 | |
) | |
filter_radius = gr.Slider( | |
label='Filter radius', | |
minimum=0, | |
maximum=7, | |
step=1, | |
value=3 | |
) | |
rms_mix_rate = gr.Slider( | |
label='Volume envelope mix rate', | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=1 | |
) | |
resample_rate = gr.Dropdown( | |
[ | |
'Disable resampling', | |
'16000', | |
'22050', | |
'44100', | |
'48000' | |
], | |
label='Resample rate', | |
value='Disable resampling' | |
) | |
with gr.Column(): | |
# Model select | |
model_index = gr.Dropdown( | |
[ | |
'%s - %s' % ( | |
m['metadata'].get('source', 'Unknown'), | |
m['metadata'].get('name') | |
) | |
for m in loaded_models | |
], | |
label='请选择您的AI歌手', | |
type='index' | |
) | |
# Model info | |
with gr.Box(): | |
model_info = gr.Markdown( | |
'### AI歌手信息\n' | |
'Please select a model from dropdown above.', | |
elem_id='model_info' | |
) | |
output_audio = gr.Audio(label='AI歌手(无伴奏)', type="filepath") | |
output_msg = gr.Textbox(label='Output message') | |
multi_examples = multi_cfg.get('examples') | |
if ( | |
multi_examples and | |
multi_examples.get('vc') and multi_examples.get('tts_vc') | |
): | |
with gr.Accordion('Sweet sweet examples', open=False): | |
with gr.Row(): | |
# VC Example | |
if multi_examples.get('vc'): | |
gr.Examples( | |
label='Audio conversion examples', | |
examples=multi_examples.get('vc'), | |
inputs=[ | |
input_audio, model_index, pitch_adjust, f0_method, | |
feat_ratio | |
], | |
outputs=[output_audio, output_msg, model_info], | |
fn=_example_vc, | |
cache_examples=args.cache_examples, | |
run_on_click=args.cache_examples | |
) | |
# Edge TTS Example | |
if multi_examples.get('tts_vc'): | |
gr.Examples( | |
label='TTS conversion examples', | |
examples=multi_examples.get('tts_vc'), | |
inputs=[ | |
tts_input, model_index, tts_speaker, pitch_adjust, | |
f0_method, feat_ratio | |
], | |
outputs=[output_audio, output_msg, model_info], | |
fn=_example_edge_tts, | |
cache_examples=args.cache_examples, | |
run_on_click=args.cache_examples | |
) | |
vc_convert_btn.click( | |
vc_func, | |
[ | |
input_audio, model_index, pitch_adjust, f0_method, feat_ratio, | |
filter_radius, rms_mix_rate, resample_rate | |
], | |
[output_audio, output_msg], | |
api_name='audio_conversion' | |
) | |
tts_convert_btn.click( | |
edge_tts_vc_func, | |
[ | |
tts_input, model_index, tts_speaker, pitch_adjust, f0_method, | |
feat_ratio, filter_radius, rms_mix_rate, resample_rate | |
], | |
[output_audio, output_msg], | |
api_name='tts_conversion' | |
) | |
full_song.click(fn=mix, inputs=[output_audio, as_audio_no_vocals], outputs=[new_song]) | |
model_index.change( | |
update_model_info, | |
inputs=[model_index], | |
outputs=[model_info], | |
show_progress=False, | |
queue=False | |
) | |
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘 | |
</p> | |
</div> | |
''') | |
app.queue( | |
concurrency_count=1, | |
max_size=20, | |
api_open=args.api | |
).launch(show_error=True) |