Spaces:
Running
Running
Update extract_red_text.py
Browse files- extract_red_text.py +284 -197
extract_red_text.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
extract_red_text.py
|
| 4 |
-
|
| 5 |
-
|
| 6 |
"""
|
| 7 |
|
| 8 |
import re
|
|
@@ -11,26 +11,62 @@ import sys
|
|
| 11 |
from docx import Document
|
| 12 |
from docx.oxml.ns import qn
|
| 13 |
|
| 14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
normalize_text,
|
| 21 |
-
normalize_header_text,
|
| 22 |
-
flatten_json,
|
| 23 |
-
find_matching_json_key_and_value,
|
| 24 |
-
get_clean_text,
|
| 25 |
-
has_red_text,
|
| 26 |
-
extract_red_text_segments,
|
| 27 |
-
replace_red_text_in_cell,
|
| 28 |
-
key_is_forbidden_for_position,
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
# -------------------------------------------------------------------
|
| 32 |
-
# Small XML helper (kept exactly as before — low-level)
|
| 33 |
-
# -------------------------------------------------------------------
|
| 34 |
def _prev_para_text(tbl):
|
| 35 |
"""Get text from previous paragraph before table"""
|
| 36 |
prev = tbl._tbl.getprevious()
|
|
@@ -40,60 +76,123 @@ def _prev_para_text(tbl):
|
|
| 40 |
return ""
|
| 41 |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def fuzzy_match_heading(heading, patterns):
|
| 47 |
-
"""
|
| 48 |
if not heading:
|
| 49 |
return False
|
| 50 |
-
heading_norm =
|
| 51 |
for pattern in patterns:
|
| 52 |
try:
|
| 53 |
if re.search(pattern, heading_norm, re.IGNORECASE):
|
| 54 |
return True
|
| 55 |
except re.error:
|
| 56 |
-
# fallback simple substring if pattern isn't a valid re
|
| 57 |
if pattern.upper() in heading_norm:
|
| 58 |
return True
|
| 59 |
return False
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
#
|
| 86 |
-
#
|
| 87 |
def calculate_schema_match_score(schema_name, spec, context):
|
| 88 |
-
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
|
| 89 |
score = 0
|
| 90 |
reasons = []
|
| 91 |
|
| 92 |
-
#
|
| 93 |
if "Vehicle Registration" in schema_name:
|
| 94 |
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
|
| 95 |
-
table_text = " ".join(context[
|
| 96 |
-
keyword_matches = sum(1 for
|
| 97 |
if keyword_matches >= 2:
|
| 98 |
score += 150
|
| 99 |
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
|
|
@@ -101,53 +200,52 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 101 |
score += 75
|
| 102 |
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
if "Summary" in schema_name and "details" in " ".join(context[
|
| 106 |
score += 100
|
| 107 |
-
reasons.append(
|
| 108 |
-
|
| 109 |
-
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
|
| 110 |
score -= 75
|
| 111 |
-
reasons.append(
|
| 112 |
|
| 113 |
-
#
|
| 114 |
if spec.get("context_exclusions"):
|
| 115 |
-
table_text = " ".join(context[
|
| 116 |
-
for
|
| 117 |
-
if
|
| 118 |
score -= 50
|
| 119 |
-
reasons.append(f"Context exclusion penalty: '{
|
| 120 |
|
| 121 |
-
# Context keywords
|
| 122 |
if spec.get("context_keywords"):
|
| 123 |
-
table_text = " ".join(context[
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
# Direct first cell match
|
| 133 |
-
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
|
| 134 |
score += 100
|
| 135 |
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
|
| 136 |
|
| 137 |
-
#
|
| 138 |
if spec.get("headings"):
|
| 139 |
for h in spec["headings"]:
|
| 140 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
score += 50
|
| 142 |
reasons.append(f"Heading match: '{context['heading']}'")
|
| 143 |
break
|
| 144 |
|
| 145 |
-
#
|
| 146 |
if spec.get("columns"):
|
| 147 |
-
cols = [normalize_text(
|
| 148 |
matches = 0
|
| 149 |
for col in cols:
|
| 150 |
-
if any(col.upper() in h.upper() for h in context[
|
| 151 |
matches += 1
|
| 152 |
if matches == len(cols):
|
| 153 |
score += 60
|
|
@@ -156,48 +254,47 @@ def calculate_schema_match_score(schema_name, spec, context):
|
|
| 156 |
score += matches * 20
|
| 157 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 158 |
|
| 159 |
-
#
|
| 160 |
if spec.get("orientation") == "left":
|
| 161 |
-
labels = [normalize_text(lbl) for lbl in spec
|
| 162 |
matches = 0
|
| 163 |
for lbl in labels:
|
| 164 |
-
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context[
|
| 165 |
matches += 1
|
| 166 |
if matches > 0:
|
| 167 |
-
score += (matches / len(labels)) * 30
|
| 168 |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 169 |
|
| 170 |
-
#
|
| 171 |
elif spec.get("orientation") == "row1":
|
| 172 |
-
labels = [normalize_text(lbl) for lbl in spec
|
| 173 |
matches = 0
|
| 174 |
for lbl in labels:
|
| 175 |
-
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context[
|
| 176 |
matches += 1
|
| 177 |
-
elif any(word.upper() in " ".join(context[
|
| 178 |
matches += 0.5
|
| 179 |
if matches > 0:
|
| 180 |
-
score += (matches / len(labels)) * 40
|
| 181 |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 182 |
|
| 183 |
-
#
|
| 184 |
-
if schema_name == "Operator Declaration" and context[
|
| 185 |
-
if "OPERATOR DECLARATION" in context[
|
| 186 |
score += 80
|
| 187 |
reasons.append("Operator Declaration context match")
|
| 188 |
-
elif any("MANAGER" in cell.upper() for cell in context[
|
| 189 |
score += 60
|
| 190 |
reasons.append("Manager found in cells (likely Operator Declaration)")
|
| 191 |
|
| 192 |
-
if schema_name == "NHVAS Approved Auditor Declaration" and context[
|
| 193 |
-
if any("MANAGER" in cell.upper() for cell in context[
|
| 194 |
score -= 50
|
| 195 |
reasons.append("Penalty: Manager found (not auditor)")
|
| 196 |
|
| 197 |
return score, reasons
|
| 198 |
|
| 199 |
def match_table_schema(tbl):
|
| 200 |
-
"""Improved table schema matching with scoring system"""
|
| 201 |
context = get_table_context(tbl)
|
| 202 |
best_match = None
|
| 203 |
best_score = 0
|
|
@@ -210,23 +307,23 @@ def match_table_schema(tbl):
|
|
| 210 |
return best_match
|
| 211 |
return None
|
| 212 |
|
| 213 |
-
#
|
| 214 |
-
# Multi-schema detection & extraction (
|
| 215 |
-
#
|
| 216 |
def check_multi_schema_table(tbl):
|
| 217 |
-
"""Check if table contains multiple schemas and split appropriately"""
|
| 218 |
context = get_table_context(tbl)
|
| 219 |
-
operator_labels = [
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
|
| 222 |
-
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context[
|
| 223 |
-
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context[
|
| 224 |
if has_operator and has_contact:
|
| 225 |
return ["Operator Information", "Operator contact details"]
|
| 226 |
return None
|
| 227 |
|
| 228 |
def extract_multi_schema_table(tbl, schemas):
|
| 229 |
-
"""Extract data from table with multiple schemas"""
|
| 230 |
result = {}
|
| 231 |
for schema_name in schemas:
|
| 232 |
if schema_name not in TABLE_SCHEMAS:
|
|
@@ -239,7 +336,7 @@ def extract_multi_schema_table(tbl, schemas):
|
|
| 239 |
row_label = normalize_text(row.cells[0].text)
|
| 240 |
belongs_to_schema = False
|
| 241 |
matched_label = None
|
| 242 |
-
for spec_label in spec
|
| 243 |
spec_norm = normalize_text(spec_label).upper()
|
| 244 |
row_norm = row_label.upper()
|
| 245 |
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
|
|
@@ -251,29 +348,26 @@ def extract_multi_schema_table(tbl, schemas):
|
|
| 251 |
for ci, cell in enumerate(row.cells):
|
| 252 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 253 |
if red_txt:
|
| 254 |
-
|
| 255 |
-
schema_data[matched_label] = []
|
| 256 |
if red_txt not in schema_data[matched_label]:
|
| 257 |
schema_data[matched_label].append(red_txt)
|
| 258 |
if schema_data:
|
| 259 |
result[schema_name] = schema_data
|
| 260 |
return result
|
| 261 |
|
| 262 |
-
#
|
| 263 |
-
#
|
| 264 |
-
#
|
| 265 |
def extract_table_data(tbl, schema_name, spec):
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
# Special handling for vehicle registration tables
|
| 269 |
if "Vehicle Registration" in schema_name:
|
| 270 |
print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table")
|
| 271 |
-
labels = spec
|
| 272 |
collected = {lbl: [] for lbl in labels}
|
| 273 |
seen = {lbl: set() for lbl in labels}
|
| 274 |
|
| 275 |
if len(tbl.rows) < 2:
|
| 276 |
-
print(
|
| 277 |
return {}
|
| 278 |
|
| 279 |
header_row = tbl.rows[0]
|
|
@@ -285,38 +379,40 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 285 |
header_text = normalize_text(cell.text).strip()
|
| 286 |
if not header_text:
|
| 287 |
continue
|
| 288 |
-
|
| 289 |
print(f" Column {col_idx}: '{header_text}'")
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
|
| 301 |
-
label_words = set(word.upper() for word in label.split() if len(word) > 2)
|
| 302 |
-
|
| 303 |
-
if header_words and label_words:
|
| 304 |
-
common_words = header_words.intersection(label_words)
|
| 305 |
-
if common_words:
|
| 306 |
-
score = len(common_words) / max(len(header_words), len(label_words))
|
| 307 |
-
if score > best_score and score >= 0.4:
|
| 308 |
-
best_score = score
|
| 309 |
-
best_match = label
|
| 310 |
-
|
| 311 |
-
if best_match:
|
| 312 |
-
column_mapping[col_idx] = best_match
|
| 313 |
-
print(f" ✅ Mapped to: '{best_match}' (score: {best_score:.2f})")
|
| 314 |
else:
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
print(f" 📊 Total column mappings: {len(column_mapping)}")
|
| 318 |
|
| 319 |
-
# Extract red text from data rows
|
| 320 |
for row_idx in range(1, len(tbl.rows)):
|
| 321 |
row = tbl.rows[row_idx]
|
| 322 |
print(f" 📌 Processing data row {row_idx}")
|
|
@@ -326,14 +422,14 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 326 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 327 |
if red_txt:
|
| 328 |
print(f" 🔴 Found red text in '{label}': '{red_txt}'")
|
| 329 |
-
if red_txt not in seen
|
| 330 |
seen[label].add(red_txt)
|
| 331 |
-
collected[
|
| 332 |
result = {k: v for k, v in collected.items() if v}
|
| 333 |
print(f" ✅ Vehicle Registration extracted: {len(result)} columns with data")
|
| 334 |
return result
|
| 335 |
|
| 336 |
-
#
|
| 337 |
labels = spec.get("labels", []) + [schema_name]
|
| 338 |
collected = {lbl: [] for lbl in labels}
|
| 339 |
seen = {lbl: set() for lbl in labels}
|
|
@@ -367,19 +463,15 @@ def extract_table_data(tbl, schema_name, spec):
|
|
| 367 |
break
|
| 368 |
if not lbl:
|
| 369 |
lbl = schema_name
|
| 370 |
-
if red_txt not in seen
|
| 371 |
seen[lbl].add(red_txt)
|
| 372 |
-
collected[
|
| 373 |
return {k: v for k, v in collected.items() if v}
|
| 374 |
|
| 375 |
-
#
|
| 376 |
-
# Main extraction:
|
| 377 |
-
#
|
| 378 |
def extract_red_text(input_doc):
|
| 379 |
-
"""
|
| 380 |
-
input_doc: docx.Document object or file path
|
| 381 |
-
returns: dict
|
| 382 |
-
"""
|
| 383 |
if isinstance(input_doc, str):
|
| 384 |
doc = Document(input_doc)
|
| 385 |
else:
|
|
@@ -389,76 +481,70 @@ def extract_red_text(input_doc):
|
|
| 389 |
|
| 390 |
for tbl in doc.tables:
|
| 391 |
table_count += 1
|
| 392 |
-
# Check multi-schema table first
|
| 393 |
multi_schemas = check_multi_schema_table(tbl)
|
| 394 |
if multi_schemas:
|
| 395 |
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
| 396 |
for schema_name, schema_data in multi_data.items():
|
| 397 |
if schema_data:
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
continue
|
| 407 |
|
| 408 |
schema = match_table_schema(tbl)
|
| 409 |
if not schema:
|
| 410 |
-
# keep scanning for tables even if no schema matched
|
| 411 |
continue
|
| 412 |
spec = TABLE_SCHEMAS[schema]
|
| 413 |
data = extract_table_data(tbl, schema, spec)
|
| 414 |
if data:
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
# paragraphs
|
| 425 |
paras = {}
|
| 426 |
for idx, para in enumerate(doc.paragraphs):
|
| 427 |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 428 |
if not red_txt:
|
| 429 |
continue
|
| 430 |
|
| 431 |
-
# find
|
| 432 |
context = None
|
| 433 |
-
for j in range(idx-1, -1, -1):
|
| 434 |
txt = normalize_text(doc.paragraphs[j].text)
|
| 435 |
if txt:
|
| 436 |
-
|
| 437 |
-
if any(re.search(p, txt, re.IGNORECASE) for p in
|
| 438 |
context = txt
|
| 439 |
break
|
| 440 |
|
| 441 |
-
#
|
| 442 |
-
if not context and re.fullmatch(PARAGRAPH_PATTERNS
|
| 443 |
context = "Date"
|
| 444 |
|
| 445 |
if not context:
|
| 446 |
context = "(para)"
|
| 447 |
-
paras.setdefault(context, [])
|
|
|
|
|
|
|
| 448 |
|
| 449 |
if paras:
|
| 450 |
out["paragraphs"] = paras
|
| 451 |
return out
|
| 452 |
|
| 453 |
-
#
|
| 454 |
-
# File
|
| 455 |
-
#
|
| 456 |
def extract_red_text_filelike(input_file, output_file):
|
| 457 |
-
"""
|
| 458 |
-
Accepts:
|
| 459 |
-
input_file: file-like object (BytesIO/File) or path
|
| 460 |
-
output_file: file-like object (opened for writing text) or path
|
| 461 |
-
"""
|
| 462 |
if hasattr(input_file, "seek"):
|
| 463 |
input_file.seek(0)
|
| 464 |
doc = Document(input_file)
|
|
@@ -471,16 +557,17 @@ def extract_red_text_filelike(input_file, output_file):
|
|
| 471 |
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 472 |
return result
|
| 473 |
|
| 474 |
-
#
|
| 475 |
-
# CLI entrypoint (
|
| 476 |
-
#
|
| 477 |
if __name__ == "__main__":
|
| 478 |
if len(sys.argv) == 3:
|
| 479 |
input_docx = sys.argv[1]
|
| 480 |
output_json = sys.argv[2]
|
| 481 |
doc = Document(input_docx)
|
| 482 |
word_data = extract_red_text(doc)
|
| 483 |
-
|
|
|
|
| 484 |
json.dump(word_data, f, indent=2, ensure_ascii=False)
|
| 485 |
print(json.dumps(word_data, indent=2, ensure_ascii=False))
|
| 486 |
else:
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
extract_red_text.py
|
| 4 |
+
Hardened version: preserves original logic/prints while improving header-label mapping,
|
| 5 |
+
robustness to missing hf_utils and better synonym handling for vehicle tables.
|
| 6 |
"""
|
| 7 |
|
| 8 |
import re
|
|
|
|
| 11 |
from docx import Document
|
| 12 |
from docx.oxml.ns import qn
|
| 13 |
|
| 14 |
+
# Try to reuse your hf_utils if available (non-breaking); otherwise fall back to local helpers.
|
| 15 |
+
try:
|
| 16 |
+
from hf_utils import (
|
| 17 |
+
is_red_font,
|
| 18 |
+
normalize_text,
|
| 19 |
+
normalize_header_text,
|
| 20 |
+
get_clean_text,
|
| 21 |
+
)
|
| 22 |
+
except Exception:
|
| 23 |
+
# Minimal compatible fallbacks if hf_utils is not present.
|
| 24 |
+
def normalize_text(s: str) -> str:
|
| 25 |
+
if not s:
|
| 26 |
+
return ""
|
| 27 |
+
s = re.sub(r"\u2013|\u2014", "-", s) # smart dashes
|
| 28 |
+
s = re.sub(r"[^\w\s\-\&\(\)\/:]", " ", s) # keep a small set of punctuation
|
| 29 |
+
s = re.sub(r"\s+", " ", s).strip()
|
| 30 |
+
return s
|
| 31 |
+
|
| 32 |
+
def normalize_header_text(s: str) -> str:
|
| 33 |
+
return normalize_text(s).upper()
|
| 34 |
+
|
| 35 |
+
def is_red_font(run):
|
| 36 |
+
"""Best-effort red detection fallback for when hf_utils isn't available."""
|
| 37 |
+
try:
|
| 38 |
+
col = getattr(run.font, "color", None)
|
| 39 |
+
if col and getattr(col, "rgb", None):
|
| 40 |
+
rgb = col.rgb
|
| 41 |
+
r, g, b = rgb[0], rgb[1], rgb[2]
|
| 42 |
+
if r > 150 and g < 120 and b < 120 and (r - max(g, b)) > 30:
|
| 43 |
+
return True
|
| 44 |
+
except Exception:
|
| 45 |
+
pass
|
| 46 |
+
# fallback to xml check
|
| 47 |
+
try:
|
| 48 |
+
rPr = getattr(run._element, "rPr", None)
|
| 49 |
+
if rPr is not None:
|
| 50 |
+
clr = rPr.find(qn('w:color'))
|
| 51 |
+
if clr is not None:
|
| 52 |
+
val = clr.get(qn('w:val'))
|
| 53 |
+
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
|
| 54 |
+
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
|
| 55 |
+
if rr > 150 and gg < 120 and bb < 120 and (rr - max(gg, bb)) > 30:
|
| 56 |
+
return True
|
| 57 |
+
except Exception:
|
| 58 |
+
pass
|
| 59 |
+
return False
|
| 60 |
+
|
| 61 |
+
def get_clean_text(elem):
|
| 62 |
+
return "".join(node.text for node in elem.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 63 |
+
|
| 64 |
+
# Import master schemas and patterns (your file)
|
| 65 |
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
|
| 66 |
|
| 67 |
+
# ---------------------------------------------------------------------
|
| 68 |
+
# Low-level helpers (kept and hardened)
|
| 69 |
+
# ---------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
def _prev_para_text(tbl):
|
| 71 |
"""Get text from previous paragraph before table"""
|
| 72 |
prev = tbl._tbl.getprevious()
|
|
|
|
| 76 |
return ""
|
| 77 |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
|
| 78 |
|
| 79 |
+
def get_table_context(tbl):
|
| 80 |
+
"""Return structured context for a table"""
|
| 81 |
+
heading = normalize_text(_prev_para_text(tbl))
|
| 82 |
+
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()] if tbl.rows else []
|
| 83 |
+
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
|
| 84 |
+
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
|
| 85 |
+
all_cells = []
|
| 86 |
+
for row in tbl.rows:
|
| 87 |
+
for cell in row.cells:
|
| 88 |
+
t = normalize_text(cell.text)
|
| 89 |
+
if t:
|
| 90 |
+
all_cells.append(t)
|
| 91 |
+
return {
|
| 92 |
+
"heading": heading,
|
| 93 |
+
"headers": headers,
|
| 94 |
+
"col0": col0,
|
| 95 |
+
"first_cell": first_cell,
|
| 96 |
+
"all_cells": all_cells,
|
| 97 |
+
"num_rows": len(tbl.rows),
|
| 98 |
+
"num_cols": len(tbl.rows[0].cells) if tbl.rows else 0,
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
def fuzzy_match_heading(heading, patterns):
|
| 102 |
+
"""Return True if heading fuzzy-matches any regex patterns"""
|
| 103 |
if not heading:
|
| 104 |
return False
|
| 105 |
+
heading_norm = heading.upper()
|
| 106 |
for pattern in patterns:
|
| 107 |
try:
|
| 108 |
if re.search(pattern, heading_norm, re.IGNORECASE):
|
| 109 |
return True
|
| 110 |
except re.error:
|
|
|
|
| 111 |
if pattern.upper() in heading_norm:
|
| 112 |
return True
|
| 113 |
return False
|
| 114 |
|
| 115 |
+
# ---------------------------------------------------------------------
|
| 116 |
+
# Header-to-label synonym map: improved coverage for common OCR/header variants
|
| 117 |
+
# ---------------------------------------------------------------------
|
| 118 |
+
HEADER_SYNONYMS = {
|
| 119 |
+
# normalized header (upper) -> canonical label in TABLE_SCHEMAS
|
| 120 |
+
"NO": "No.",
|
| 121 |
+
"NO.": "No.",
|
| 122 |
+
"REG NO": "Registration Number",
|
| 123 |
+
"REGISTRATIONNO": "Registration Number",
|
| 124 |
+
"REGISTRATION NUMBER": "Registration Number",
|
| 125 |
+
"REGISTRATION": "Registration Number",
|
| 126 |
+
"PRINT NAME": "Print Name",
|
| 127 |
+
"NHVR OR EXEMPLAR GLOBAL AUDITOR REGISTRATION NUMBER": "NHVR or Exemplar Global Auditor Registration Number",
|
| 128 |
+
"ROADWORTHINESS CERTIFICATES": "Roadworthiness Certificates",
|
| 129 |
+
"ROADWORTHINESS CERTIFICATES (APPLICABLE FOR ENTRY AUDIT)": "Roadworthiness Certificates",
|
| 130 |
+
"MAINTENANCE RECORDS": "Maintenance Records",
|
| 131 |
+
"DAILY CHECKS": "Daily Checks",
|
| 132 |
+
"FAULT RECORDING/ REPORTING": "Fault Recording/ Reporting",
|
| 133 |
+
"FAULT RECORDING/REPORTING": "Fault Recording/ Reporting",
|
| 134 |
+
"FAULT REPAIR": "Fault Repair",
|
| 135 |
+
"WEIGHT VERIFICATION RECORDS": "Weight Verification Records",
|
| 136 |
+
"RFS SUSPENSION CERTIFICATION #": "RFS Suspension Certification #",
|
| 137 |
+
"SUSPENSION SYSTEM MAINTENANCE": "Suspension System Maintenance",
|
| 138 |
+
"TRIP RECORDS": "Trip Records",
|
| 139 |
+
"FAULT RECORDING/ REPORTING ON SUSPENSION SYSTEM": "Fault Recording/ Reporting",
|
| 140 |
+
# short forms
|
| 141 |
+
"REG NO.": "Registration Number",
|
| 142 |
+
"REGISTRATION #": "Registration Number",
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
def map_header_to_label(header_text, labels):
|
| 146 |
+
"""
|
| 147 |
+
Given a header_text (raw) and list of candidate labels (from schema),
|
| 148 |
+
return the best matching label or None.
|
| 149 |
+
"""
|
| 150 |
+
if not header_text:
|
| 151 |
+
return None
|
| 152 |
+
hnorm = normalize_header_text(header_text)
|
| 153 |
+
# exact synonym map
|
| 154 |
+
for key, lab in HEADER_SYNONYMS.items():
|
| 155 |
+
if key in hnorm:
|
| 156 |
+
# ensure lab exists in candidate labels (case-insensitive)
|
| 157 |
+
for cand in labels:
|
| 158 |
+
if normalize_header_text(cand) == normalize_header_text(lab):
|
| 159 |
+
return cand
|
| 160 |
+
# if it isn't in labels, still return the lab (labels sometimes omit punctuation)
|
| 161 |
+
return lab
|
| 162 |
+
|
| 163 |
+
# try exact match to any candidate label
|
| 164 |
+
for cand in labels:
|
| 165 |
+
if normalize_header_text(cand) == hnorm:
|
| 166 |
+
return cand
|
| 167 |
+
|
| 168 |
+
# token overlap scoring (flexible)
|
| 169 |
+
header_words = [w for w in re.split(r"\W+", header_text) if len(w) > 2]
|
| 170 |
+
best = (None, 0.0)
|
| 171 |
+
for cand in labels:
|
| 172 |
+
cand_words = [w for w in re.split(r"\W+", cand) if len(w) > 2]
|
| 173 |
+
if not cand_words or not header_words:
|
| 174 |
+
continue
|
| 175 |
+
common = set(w.upper() for w in header_words).intersection(set(w.upper() for w in cand_words))
|
| 176 |
+
score = len(common) / max(1, max(len(header_words), len(cand_words)))
|
| 177 |
+
if score > best[1]:
|
| 178 |
+
best = (cand, score)
|
| 179 |
+
# lower threshold for vehicle tables / noisy OCR (accept >= 0.25)
|
| 180 |
+
if best[1] >= 0.25:
|
| 181 |
+
return best[0]
|
| 182 |
+
return None
|
| 183 |
|
| 184 |
+
# ---------------------------------------------------------------------
|
| 185 |
+
# Matching / scoring logic (keeps original heuristics)
|
| 186 |
+
# ---------------------------------------------------------------------
|
| 187 |
def calculate_schema_match_score(schema_name, spec, context):
|
|
|
|
| 188 |
score = 0
|
| 189 |
reasons = []
|
| 190 |
|
| 191 |
+
# Vehicle registration boost
|
| 192 |
if "Vehicle Registration" in schema_name:
|
| 193 |
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
|
| 194 |
+
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
|
| 195 |
+
keyword_matches = sum(1 for k in vehicle_keywords if k in table_text)
|
| 196 |
if keyword_matches >= 2:
|
| 197 |
score += 150
|
| 198 |
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
|
|
|
|
| 200 |
score += 75
|
| 201 |
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
|
| 202 |
|
| 203 |
+
# Summary boost
|
| 204 |
+
if "Summary" in schema_name and "details" in " ".join(context["headers"]).lower():
|
| 205 |
score += 100
|
| 206 |
+
reasons.append("Summary schema with DETAILS column - perfect match")
|
| 207 |
+
if "Summary" not in schema_name and "details" in " ".join(context["headers"]).lower():
|
|
|
|
| 208 |
score -= 75
|
| 209 |
+
reasons.append("Non-summary schema penalized for DETAILS column presence")
|
| 210 |
|
| 211 |
+
# context exclusions & keywords
|
| 212 |
if spec.get("context_exclusions"):
|
| 213 |
+
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
|
| 214 |
+
for exc in spec["context_exclusions"]:
|
| 215 |
+
if exc.lower() in table_text:
|
| 216 |
score -= 50
|
| 217 |
+
reasons.append(f"Context exclusion penalty: '{exc}'")
|
| 218 |
|
|
|
|
| 219 |
if spec.get("context_keywords"):
|
| 220 |
+
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
|
| 221 |
+
matches = sum(1 for kw in spec["context_keywords"] if kw.lower() in table_text)
|
| 222 |
+
if matches:
|
| 223 |
+
score += matches * 15
|
| 224 |
+
reasons.append(f"Context keyword matches: {matches}/{len(spec['context_keywords'])}")
|
| 225 |
+
|
| 226 |
+
# direct first-cell match
|
| 227 |
+
if context["first_cell"] and context["first_cell"].upper() == schema_name.upper():
|
|
|
|
|
|
|
|
|
|
| 228 |
score += 100
|
| 229 |
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
|
| 230 |
|
| 231 |
+
# heading pattern
|
| 232 |
if spec.get("headings"):
|
| 233 |
for h in spec["headings"]:
|
| 234 |
+
if isinstance(h, dict):
|
| 235 |
+
text = h.get("text", "")
|
| 236 |
+
else:
|
| 237 |
+
text = h
|
| 238 |
+
if fuzzy_match_heading(context["heading"], [text]):
|
| 239 |
score += 50
|
| 240 |
reasons.append(f"Heading match: '{context['heading']}'")
|
| 241 |
break
|
| 242 |
|
| 243 |
+
# columns matching
|
| 244 |
if spec.get("columns"):
|
| 245 |
+
cols = [normalize_text(c) for c in spec["columns"]]
|
| 246 |
matches = 0
|
| 247 |
for col in cols:
|
| 248 |
+
if any(col.upper() in h.upper() for h in context["headers"]):
|
| 249 |
matches += 1
|
| 250 |
if matches == len(cols):
|
| 251 |
score += 60
|
|
|
|
| 254 |
score += matches * 20
|
| 255 |
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
|
| 256 |
|
| 257 |
+
# left orientation
|
| 258 |
if spec.get("orientation") == "left":
|
| 259 |
+
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 260 |
matches = 0
|
| 261 |
for lbl in labels:
|
| 262 |
+
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context["col0"]):
|
| 263 |
matches += 1
|
| 264 |
if matches > 0:
|
| 265 |
+
score += (matches / max(1, len(labels))) * 30
|
| 266 |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
|
| 267 |
|
| 268 |
+
# row1 orientation
|
| 269 |
elif spec.get("orientation") == "row1":
|
| 270 |
+
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
|
| 271 |
matches = 0
|
| 272 |
for lbl in labels:
|
| 273 |
+
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context["headers"]):
|
| 274 |
matches += 1
|
| 275 |
+
elif any(word.upper() in " ".join(context["headers"]).upper() for word in lbl.split() if len(word) > 3):
|
| 276 |
matches += 0.5
|
| 277 |
if matches > 0:
|
| 278 |
+
score += (matches / max(1, len(labels))) * 40
|
| 279 |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
|
| 280 |
|
| 281 |
+
# Declarations special cases
|
| 282 |
+
if schema_name == "Operator Declaration" and context["first_cell"].upper().startswith("PRINT"):
|
| 283 |
+
if "OPERATOR DECLARATION" in context["heading"].upper():
|
| 284 |
score += 80
|
| 285 |
reasons.append("Operator Declaration context match")
|
| 286 |
+
elif any("MANAGER" in cell.upper() for cell in context["all_cells"]):
|
| 287 |
score += 60
|
| 288 |
reasons.append("Manager found in cells (likely Operator Declaration)")
|
| 289 |
|
| 290 |
+
if schema_name == "NHVAS Approved Auditor Declaration" and context["first_cell"].upper().startswith("PRINT"):
|
| 291 |
+
if any("MANAGER" in cell.upper() for cell in context["all_cells"]):
|
| 292 |
score -= 50
|
| 293 |
reasons.append("Penalty: Manager found (not auditor)")
|
| 294 |
|
| 295 |
return score, reasons
|
| 296 |
|
| 297 |
def match_table_schema(tbl):
|
|
|
|
| 298 |
context = get_table_context(tbl)
|
| 299 |
best_match = None
|
| 300 |
best_score = 0
|
|
|
|
| 307 |
return best_match
|
| 308 |
return None
|
| 309 |
|
| 310 |
+
# ---------------------------------------------------------------------
|
| 311 |
+
# Multi-schema detection & extraction (keeps original behavior)
|
| 312 |
+
# ---------------------------------------------------------------------
|
| 313 |
def check_multi_schema_table(tbl):
|
|
|
|
| 314 |
context = get_table_context(tbl)
|
| 315 |
+
operator_labels = [
|
| 316 |
+
"Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
|
| 317 |
+
"Australian Company Number", "NHVAS Manual"
|
| 318 |
+
]
|
| 319 |
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
|
| 320 |
+
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context["col0"])
|
| 321 |
+
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context["col0"])
|
| 322 |
if has_operator and has_contact:
|
| 323 |
return ["Operator Information", "Operator contact details"]
|
| 324 |
return None
|
| 325 |
|
| 326 |
def extract_multi_schema_table(tbl, schemas):
|
|
|
|
| 327 |
result = {}
|
| 328 |
for schema_name in schemas:
|
| 329 |
if schema_name not in TABLE_SCHEMAS:
|
|
|
|
| 336 |
row_label = normalize_text(row.cells[0].text)
|
| 337 |
belongs_to_schema = False
|
| 338 |
matched_label = None
|
| 339 |
+
for spec_label in spec.get("labels", []):
|
| 340 |
spec_norm = normalize_text(spec_label).upper()
|
| 341 |
row_norm = row_label.upper()
|
| 342 |
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
|
|
|
|
| 348 |
for ci, cell in enumerate(row.cells):
|
| 349 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 350 |
if red_txt:
|
| 351 |
+
schema_data.setdefault(matched_label, [])
|
|
|
|
| 352 |
if red_txt not in schema_data[matched_label]:
|
| 353 |
schema_data[matched_label].append(red_txt)
|
| 354 |
if schema_data:
|
| 355 |
result[schema_name] = schema_data
|
| 356 |
return result
|
| 357 |
|
| 358 |
+
# ---------------------------------------------------------------------
|
| 359 |
+
# Extraction: special-case for Vehicle Registration tables (row1) and generic fallback
|
| 360 |
+
# ---------------------------------------------------------------------
|
| 361 |
def extract_table_data(tbl, schema_name, spec):
|
| 362 |
+
# Vehicle registration special handling
|
|
|
|
|
|
|
| 363 |
if "Vehicle Registration" in schema_name:
|
| 364 |
print(f" 🚗 EXTRACTION FIX: Processing Vehicle Registration table")
|
| 365 |
+
labels = spec.get("labels", [])
|
| 366 |
collected = {lbl: [] for lbl in labels}
|
| 367 |
seen = {lbl: set() for lbl in labels}
|
| 368 |
|
| 369 |
if len(tbl.rows) < 2:
|
| 370 |
+
print(" ❌ Vehicle table has less than 2 rows")
|
| 371 |
return {}
|
| 372 |
|
| 373 |
header_row = tbl.rows[0]
|
|
|
|
| 379 |
header_text = normalize_text(cell.text).strip()
|
| 380 |
if not header_text:
|
| 381 |
continue
|
|
|
|
| 382 |
print(f" Column {col_idx}: '{header_text}'")
|
| 383 |
+
mapped = map_header_to_label(header_text, labels)
|
| 384 |
+
if mapped:
|
| 385 |
+
# find exact candidate label string (preserve original label spelling if possible)
|
| 386 |
+
chosen = None
|
| 387 |
+
for cand in labels:
|
| 388 |
+
if normalize_header_text(cand) == normalize_header_text(mapped):
|
| 389 |
+
chosen = cand
|
| 390 |
+
break
|
| 391 |
+
column_mapping[col_idx] = chosen or mapped
|
| 392 |
+
print(f" ✅ Mapped to: '{column_mapping[col_idx]}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
else:
|
| 394 |
+
# fallback: try fuzzy token overlap directly with candidate labels
|
| 395 |
+
best = None
|
| 396 |
+
best_score = 0.0
|
| 397 |
+
hwords = [w for w in re.split(r"\W+", header_text) if len(w) > 2]
|
| 398 |
+
for cand in labels:
|
| 399 |
+
cwords = [w for w in re.split(r"\W+", cand) if len(w) > 2]
|
| 400 |
+
if not cwords or not hwords:
|
| 401 |
+
continue
|
| 402 |
+
common = set(w.upper() for w in hwords).intersection(set(w.upper() for w in cwords))
|
| 403 |
+
score = len(common) / max(1, max(len(hwords), len(cwords)))
|
| 404 |
+
if score > best_score:
|
| 405 |
+
best = cand
|
| 406 |
+
best_score = score
|
| 407 |
+
if best and best_score >= 0.25:
|
| 408 |
+
column_mapping[col_idx] = best
|
| 409 |
+
print(f" ✅ Fuzzy-mapped to: '{best}' (score: {best_score:.2f})")
|
| 410 |
+
else:
|
| 411 |
+
print(f" ⚠️ No mapping found for '{header_text}'")
|
| 412 |
|
| 413 |
print(f" 📊 Total column mappings: {len(column_mapping)}")
|
| 414 |
|
| 415 |
+
# Extract red text from data rows
|
| 416 |
for row_idx in range(1, len(tbl.rows)):
|
| 417 |
row = tbl.rows[row_idx]
|
| 418 |
print(f" 📌 Processing data row {row_idx}")
|
|
|
|
| 422 |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
|
| 423 |
if red_txt:
|
| 424 |
print(f" 🔴 Found red text in '{label}': '{red_txt}'")
|
| 425 |
+
if red_txt not in seen.setdefault(label, set()):
|
| 426 |
seen[label].add(red_txt)
|
| 427 |
+
collected.setdefault(label, []).append(red_txt)
|
| 428 |
result = {k: v for k, v in collected.items() if v}
|
| 429 |
print(f" ✅ Vehicle Registration extracted: {len(result)} columns with data")
|
| 430 |
return result
|
| 431 |
|
| 432 |
+
# Generic fallback extraction logic
|
| 433 |
labels = spec.get("labels", []) + [schema_name]
|
| 434 |
collected = {lbl: [] for lbl in labels}
|
| 435 |
seen = {lbl: set() for lbl in labels}
|
|
|
|
| 463 |
break
|
| 464 |
if not lbl:
|
| 465 |
lbl = schema_name
|
| 466 |
+
if red_txt not in seen.setdefault(lbl, set()):
|
| 467 |
seen[lbl].add(red_txt)
|
| 468 |
+
collected.setdefault(lbl, []).append(red_txt)
|
| 469 |
return {k: v for k, v in collected.items() if v}
|
| 470 |
|
| 471 |
+
# ---------------------------------------------------------------------
|
| 472 |
+
# Main extraction: process all tables then paragraphs
|
| 473 |
+
# ---------------------------------------------------------------------
|
| 474 |
def extract_red_text(input_doc):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
if isinstance(input_doc, str):
|
| 476 |
doc = Document(input_doc)
|
| 477 |
else:
|
|
|
|
| 481 |
|
| 482 |
for tbl in doc.tables:
|
| 483 |
table_count += 1
|
|
|
|
| 484 |
multi_schemas = check_multi_schema_table(tbl)
|
| 485 |
if multi_schemas:
|
| 486 |
multi_data = extract_multi_schema_table(tbl, multi_schemas)
|
| 487 |
for schema_name, schema_data in multi_data.items():
|
| 488 |
if schema_data:
|
| 489 |
+
# merge safely and dedupe
|
| 490 |
+
existing = out.get(schema_name, {})
|
| 491 |
+
for k, v in schema_data.items():
|
| 492 |
+
existing.setdefault(k, [])
|
| 493 |
+
for val in v:
|
| 494 |
+
if val not in existing[k]:
|
| 495 |
+
existing[k].append(val)
|
| 496 |
+
out[schema_name] = existing
|
| 497 |
continue
|
| 498 |
|
| 499 |
schema = match_table_schema(tbl)
|
| 500 |
if not schema:
|
|
|
|
| 501 |
continue
|
| 502 |
spec = TABLE_SCHEMAS[schema]
|
| 503 |
data = extract_table_data(tbl, schema, spec)
|
| 504 |
if data:
|
| 505 |
+
existing = out.get(schema, {})
|
| 506 |
+
for k, v in data.items():
|
| 507 |
+
existing.setdefault(k, [])
|
| 508 |
+
for val in v:
|
| 509 |
+
if val not in existing[k]:
|
| 510 |
+
existing[k].append(val)
|
| 511 |
+
out[schema] = existing
|
| 512 |
+
|
| 513 |
+
# Paragraph red-text extraction with context
|
|
|
|
| 514 |
paras = {}
|
| 515 |
for idx, para in enumerate(doc.paragraphs):
|
| 516 |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
|
| 517 |
if not red_txt:
|
| 518 |
continue
|
| 519 |
|
| 520 |
+
# find a heading context by scanning backwards
|
| 521 |
context = None
|
| 522 |
+
for j in range(idx - 1, -1, -1):
|
| 523 |
txt = normalize_text(doc.paragraphs[j].text)
|
| 524 |
if txt:
|
| 525 |
+
patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
|
| 526 |
+
if any(re.search(p, txt, re.IGNORECASE) for p in patterns):
|
| 527 |
context = txt
|
| 528 |
break
|
| 529 |
|
| 530 |
+
# special-case date-like lines
|
| 531 |
+
if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r".*"), red_txt):
|
| 532 |
context = "Date"
|
| 533 |
|
| 534 |
if not context:
|
| 535 |
context = "(para)"
|
| 536 |
+
paras.setdefault(context, [])
|
| 537 |
+
if red_txt not in paras[context]:
|
| 538 |
+
paras[context].append(red_txt)
|
| 539 |
|
| 540 |
if paras:
|
| 541 |
out["paragraphs"] = paras
|
| 542 |
return out
|
| 543 |
|
| 544 |
+
# ---------------------------------------------------------------------
|
| 545 |
+
# File wrapper to support your existing calls
|
| 546 |
+
# ---------------------------------------------------------------------
|
| 547 |
def extract_red_text_filelike(input_file, output_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
if hasattr(input_file, "seek"):
|
| 549 |
input_file.seek(0)
|
| 550 |
doc = Document(input_file)
|
|
|
|
| 557 |
json.dump(result, f, indent=2, ensure_ascii=False)
|
| 558 |
return result
|
| 559 |
|
| 560 |
+
# ---------------------------------------------------------------------
|
| 561 |
+
# CLI entrypoint (same as before)
|
| 562 |
+
# ---------------------------------------------------------------------
|
| 563 |
if __name__ == "__main__":
|
| 564 |
if len(sys.argv) == 3:
|
| 565 |
input_docx = sys.argv[1]
|
| 566 |
output_json = sys.argv[2]
|
| 567 |
doc = Document(input_docx)
|
| 568 |
word_data = extract_red_text(doc)
|
| 569 |
+
# write file (dedupe already handled in merging logic above)
|
| 570 |
+
with open(output_json, "w", encoding="utf-8") as f:
|
| 571 |
json.dump(word_data, f, indent=2, ensure_ascii=False)
|
| 572 |
print(json.dumps(word_data, indent=2, ensure_ascii=False))
|
| 573 |
else:
|