Spaces:
Running
Running
#!/usr/bin/env python3 | |
import re | |
import json | |
import sys | |
from docx import Document | |
from docx.oxml.ns import qn | |
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS | |
def is_red_font(run): | |
"""Enhanced red font detection with better color checking""" | |
col = run.font.color | |
if col and col.rgb: | |
r, g, b = col.rgb | |
if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30: | |
return True | |
rPr = getattr(run._element, "rPr", None) | |
if rPr is not None: | |
clr = rPr.find(qn('w:color')) | |
if clr is not None: | |
val = clr.get(qn('w:val')) | |
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val): | |
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16) | |
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30: | |
return True | |
return False | |
def _prev_para_text(tbl): | |
"""Get text from previous paragraph before table""" | |
prev = tbl._tbl.getprevious() | |
while prev is not None and not prev.tag.endswith("}p"): | |
prev = prev.getprevious() | |
if prev is None: | |
return "" | |
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip() | |
def normalize_text(text): | |
"""Normalize text for better matching""" | |
return re.sub(r'\s+', ' ', text.strip()) | |
def fuzzy_match_heading(heading, patterns): | |
"""Check if heading matches any pattern with fuzzy matching""" | |
heading_norm = normalize_text(heading.upper()) | |
for pattern in patterns: | |
if re.search(pattern, heading_norm, re.IGNORECASE): | |
return True | |
return False | |
def get_table_context(tbl): | |
"""Get comprehensive context information for table""" | |
heading = normalize_text(_prev_para_text(tbl)) | |
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()] | |
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()] | |
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else "" | |
all_cells = [] | |
for row in tbl.rows: | |
for cell in row.cells: | |
text = normalize_text(cell.text) | |
if text: | |
all_cells.append(text) | |
return { | |
'heading': heading, | |
'headers': headers, | |
'col0': col0, | |
'first_cell': first_cell, | |
'all_cells': all_cells, | |
'num_rows': len(tbl.rows), | |
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0 | |
} | |
def calculate_schema_match_score(schema_name, spec, context): | |
"""Calculate match score for a schema against table context""" | |
score = 0 | |
reasons = [] | |
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper(): | |
score += 100 | |
reasons.append(f"Direct first cell match: '{context['first_cell']}'") | |
if spec.get("headings"): | |
for h in spec["headings"]: | |
if fuzzy_match_heading(context['heading'], [h["text"]]): | |
score += 50 | |
reasons.append(f"Heading match: '{context['heading']}'") | |
break | |
if spec.get("orientation") == "left": | |
labels = [normalize_text(lbl) for lbl in spec["labels"]] | |
matches = 0 | |
for lbl in labels: | |
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']): | |
matches += 1 | |
if matches > 0: | |
score += (matches / len(labels)) * 30 | |
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}") | |
elif spec.get("orientation") == "row1": | |
labels = [normalize_text(lbl) for lbl in spec["labels"]] | |
matches = 0 | |
for lbl in labels: | |
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']): | |
matches += 1 | |
if matches > 0: | |
score += (matches / len(labels)) * 30 | |
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}") | |
if spec.get("columns"): | |
cols = [normalize_text(col) for col in spec["columns"]] | |
matches = 0 | |
for col in cols: | |
if any(col.upper() in h.upper() for h in context['headers']): | |
matches += 1 | |
if matches == len(cols): | |
score += 40 | |
reasons.append(f"All column headers match: {cols}") | |
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME": | |
if "OPERATOR DECLARATION" in context['heading'].upper(): | |
score += 80 | |
reasons.append("Operator Declaration context match") | |
elif any("MANAGER" in cell.upper() for cell in context['all_cells']): | |
score += 60 | |
reasons.append("Manager found in cells (likely Operator Declaration)") | |
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME": | |
if any("MANAGER" in cell.upper() for cell in context['all_cells']): | |
score -= 50 # Penalty because auditors shouldn't be managers | |
reasons.append("Penalty: Manager found (not auditor)") | |
return score, reasons | |
def match_table_schema(tbl): | |
"""Improved table schema matching with scoring system""" | |
context = get_table_context(tbl) | |
best_match = None | |
best_score = 0 | |
for name, spec in TABLE_SCHEMAS.items(): | |
score, reasons = calculate_schema_match_score(name, spec, context) | |
if score > best_score: | |
best_score = score | |
best_match = name | |
if best_score >= 20: | |
return best_match | |
return None | |
def check_multi_schema_table(tbl): | |
"""Check if table contains multiple schemas and split appropriately""" | |
context = get_table_context(tbl) | |
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s", | |
"Australian Company Number", "NHVAS Manual"] | |
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"] | |
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0']) | |
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0']) | |
if has_operator and has_contact: | |
return ["Operator Information", "Operator contact details"] | |
return None | |
def extract_multi_schema_table(tbl, schemas): | |
"""Extract data from table with multiple schemas""" | |
result = {} | |
for schema_name in schemas: | |
if schema_name not in TABLE_SCHEMAS: | |
continue | |
spec = TABLE_SCHEMAS[schema_name] | |
schema_data = {} | |
for ri, row in enumerate(tbl.rows): | |
if ri == 0: | |
continue | |
row_label = normalize_text(row.cells[0].text) | |
belongs_to_schema = False | |
matched_label = None | |
for spec_label in spec["labels"]: | |
spec_norm = normalize_text(spec_label).upper() | |
row_norm = row_label.upper() | |
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm: | |
belongs_to_schema = True | |
matched_label = spec_label | |
break | |
if not belongs_to_schema: | |
continue | |
for ci, cell in enumerate(row.cells): | |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip() | |
if red_txt: | |
if matched_label not in schema_data: | |
schema_data[matched_label] = [] | |
if red_txt not in schema_data[matched_label]: | |
schema_data[matched_label].append(red_txt) | |
if schema_data: | |
result[schema_name] = schema_data | |
return result | |
def extract_table_data(tbl, schema_name, spec): | |
"""Extract red text data from table based on schema""" | |
labels = spec["labels"] + [schema_name] | |
collected = {lbl: [] for lbl in labels} | |
seen = {lbl: set() for lbl in labels} | |
by_col = (spec["orientation"] == "row1") | |
start_row = 1 if by_col else 0 | |
rows = tbl.rows[start_row:] | |
for ri, row in enumerate(rows): | |
for ci, cell in enumerate(row.cells): | |
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip() | |
if not red_txt: | |
continue | |
if by_col: | |
if ci < len(spec["labels"]): | |
lbl = spec["labels"][ci] | |
else: | |
lbl = schema_name | |
else: | |
raw_label = normalize_text(row.cells[0].text) | |
lbl = None | |
for spec_label in spec["labels"]: | |
if normalize_text(spec_label).upper() == raw_label.upper(): | |
lbl = spec_label | |
break | |
if not lbl: | |
for spec_label in spec["labels"]: | |
spec_norm = normalize_text(spec_label).upper() | |
raw_norm = raw_label.upper() | |
if spec_norm in raw_norm or raw_norm in spec_norm: | |
lbl = spec_label | |
break | |
if not lbl: | |
lbl = schema_name | |
if red_txt not in seen[lbl]: | |
seen[lbl].add(red_txt) | |
collected[lbl].append(red_txt) | |
return {k: v for k, v in collected.items() if v} | |
def extract_red_text(input_doc): | |
# input_doc: docx.Document object or file path | |
if isinstance(input_doc, str): | |
doc = Document(input_doc) | |
else: | |
doc = input_doc | |
out = {} | |
table_count = 0 | |
for tbl in doc.tables: | |
table_count += 1 | |
multi_schemas = check_multi_schema_table(tbl) | |
if multi_schemas: | |
multi_data = extract_multi_schema_table(tbl, multi_schemas) | |
for schema_name, schema_data in multi_data.items(): | |
if schema_data: | |
if schema_name in out: | |
for k, v in schema_data.items(): | |
if k in out[schema_name]: | |
out[schema_name][k].extend(v) | |
else: | |
out[schema_name][k] = v | |
else: | |
out[schema_name] = schema_data | |
continue | |
schema = match_table_schema(tbl) | |
if not schema: | |
continue | |
spec = TABLE_SCHEMAS[schema] | |
data = extract_table_data(tbl, schema, spec) | |
if data: | |
if schema in out: | |
for k, v in data.items(): | |
if k in out[schema]: | |
out[schema][k].extend(v) | |
else: | |
out[schema][k] = v | |
else: | |
out[schema] = data | |
paras = {} | |
for idx, para in enumerate(doc.paragraphs): | |
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip() | |
if not red_txt: | |
continue | |
context = None | |
for j in range(idx-1, -1, -1): | |
txt = normalize_text(doc.paragraphs[j].text) | |
if txt: | |
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"] | |
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns): | |
context = txt | |
break | |
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt): | |
context = "Date" | |
if not context: | |
context = "(para)" | |
paras.setdefault(context, []).append(red_txt) | |
if paras: | |
out["paragraphs"] = paras | |
return out | |
def extract_red_text_filelike(input_file, output_file): | |
""" | |
Accepts: | |
input_file: file-like object (BytesIO/File) or path | |
output_file: file-like object (opened for writing text) or path | |
""" | |
if hasattr(input_file, "seek"): | |
input_file.seek(0) | |
doc = Document(input_file) | |
result = extract_red_text(doc) | |
if hasattr(output_file, "write"): | |
json.dump(result, output_file, indent=2, ensure_ascii=False) | |
output_file.flush() | |
else: | |
with open(output_file, "w", encoding="utf-8") as f: | |
json.dump(result, f, indent=2, ensure_ascii=False) | |
return result | |
if __name__ == "__main__": | |
# Support both script and app/file-like usage | |
if len(sys.argv) == 3: | |
input_docx = sys.argv[1] | |
output_json = sys.argv[2] | |
doc = Document(input_docx) | |
word_data = extract_red_text(doc) | |
with open(output_json, 'w', encoding='utf-8') as f: | |
json.dump(word_data, f, indent=2, ensure_ascii=False) | |
print(json.dumps(word_data, indent=2, ensure_ascii=False)) | |
else: | |
print("To use as a module: extract_red_text_filelike(input_file, output_file)") |