Spaces:
Sleeping
Sleeping
Shakshi3104
commited on
Commit
•
3e4b2ef
1
Parent(s):
85c3441
[add] Implement vector search with Ruri and Voyager
Browse files- model/search/ruri.py +165 -0
model/search/ruri.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from typing import List, Union, Optional
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
from copy import deepcopy
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from loguru import logger
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
import sentence_transformers as st
|
15 |
+
from sentence_transformers import util as st_util
|
16 |
+
|
17 |
+
import voyager
|
18 |
+
|
19 |
+
from model.search.base import BaseSearchClient
|
20 |
+
|
21 |
+
|
22 |
+
def array_to_string(array: np.ndarray) -> str:
|
23 |
+
"""
|
24 |
+
np.ndarrayを文字列に変換する
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
array:
|
29 |
+
np.ndarray
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
array_string:
|
34 |
+
str
|
35 |
+
"""
|
36 |
+
array_string = f"{array.tolist()}"
|
37 |
+
return array_string
|
38 |
+
|
39 |
+
|
40 |
+
class RuriEmbedder:
|
41 |
+
def __init__(self, model: Optional[st.SentenceTransformer] = None):
|
42 |
+
|
43 |
+
load_dotenv()
|
44 |
+
|
45 |
+
# モデルの保存先
|
46 |
+
self.model_dir = Path("models/ruri")
|
47 |
+
model_filepath = self.model_dir / "ruri-large"
|
48 |
+
|
49 |
+
# モデル
|
50 |
+
if model is None:
|
51 |
+
if model_filepath.exists():
|
52 |
+
logger.info(f"🚦 [RuriEmbedder] load ruri-large from local path: {model_filepath}")
|
53 |
+
self.model = st.SentenceTransformer(str(model_filepath))
|
54 |
+
else:
|
55 |
+
logger.info(f"🚦 [RuriEmbedder] load ruri-large from HuggingFace🤗")
|
56 |
+
token = os.getenv("HF_TOKEN")
|
57 |
+
self.model = st.SentenceTransformer("cl-nagoya/ruri-large", token=token)
|
58 |
+
# モデルを保存する
|
59 |
+
logger.info(f"🚦 [RuriEmbedder] save model ...")
|
60 |
+
self.model.save(str(model_filepath))
|
61 |
+
else:
|
62 |
+
self.model = model
|
63 |
+
|
64 |
+
def embed(self, text: Union[str, list[str]]) -> np.ndarray:
|
65 |
+
"""
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
text:
|
70 |
+
Union[str, list[str]], ベクトル化する文字列
|
71 |
+
|
72 |
+
Returns
|
73 |
+
-------
|
74 |
+
embedding:
|
75 |
+
np.ndarray, 埋め込み表現. トークンサイズ 1024
|
76 |
+
"""
|
77 |
+
embedding = self.model.encode(text, convert_to_numpy=True)
|
78 |
+
return embedding
|
79 |
+
|
80 |
+
|
81 |
+
class RuriVoyagerSearchClient(BaseSearchClient):
|
82 |
+
def __init__(self, dataset: pd.DataFrame, target: str,
|
83 |
+
index: voyager.Index,
|
84 |
+
model: RuriEmbedder):
|
85 |
+
load_dotenv()
|
86 |
+
# オリジナルのコーパス
|
87 |
+
self.dataset = dataset
|
88 |
+
self.corpus = dataset[target].values.tolist()
|
89 |
+
|
90 |
+
# 埋め込みモデル
|
91 |
+
self.embedder = model
|
92 |
+
|
93 |
+
# Voyagerインデックス
|
94 |
+
self.index = index
|
95 |
+
|
96 |
+
@classmethod
|
97 |
+
def from_dataframe(cls, _data: pd.DataFrame, _target: str):
|
98 |
+
logger.info("🚦 [RuriVoyagerSearchClient] Initialize from DataFrame")
|
99 |
+
|
100 |
+
search_field = _data[_target]
|
101 |
+
corpus = search_field.values.tolist()
|
102 |
+
|
103 |
+
# 埋め込みモデルの初期化
|
104 |
+
embedder = RuriEmbedder()
|
105 |
+
|
106 |
+
# Ruriの前処理
|
107 |
+
corpus = [f"文章: {c}" for c in corpus]
|
108 |
+
|
109 |
+
# ベクトル化する
|
110 |
+
embeddings = embedder.embed(corpus)
|
111 |
+
|
112 |
+
# 埋め込みベクトルの次元
|
113 |
+
num_dim = embeddings.shape[1]
|
114 |
+
logger.debug(f"🚦⚓️ [RuriVoyagerSearchClient] Number of dimensions of Embedding vector is {num_dim}")
|
115 |
+
|
116 |
+
# Voyagerのインデックスを初期化
|
117 |
+
index = voyager.Index(voyager.Space.Cosine, num_dimensions=num_dim)
|
118 |
+
# indexにベクトルを追加
|
119 |
+
_ = index.add_items(embeddings)
|
120 |
+
|
121 |
+
return cls(_data, _target, index, embedder)
|
122 |
+
|
123 |
+
def search_top_n(self, _query: Union[List[str], str], n: int = 10) -> List[pd.DataFrame]:
|
124 |
+
"""
|
125 |
+
クエリに対する検索結果をtop-n個取得する
|
126 |
+
|
127 |
+
Parameters
|
128 |
+
----------
|
129 |
+
_query:
|
130 |
+
Union[List[str], str], 検索クエリ
|
131 |
+
n:
|
132 |
+
int, top-nの個数. デフォルト 10.
|
133 |
+
|
134 |
+
Returns
|
135 |
+
-------
|
136 |
+
results:
|
137 |
+
List[pd.DataFrame], ランキング結果
|
138 |
+
"""
|
139 |
+
|
140 |
+
logger.info(f"🚦 [RuriVoyagerSearchClient] Search top {n} | {_query}")
|
141 |
+
|
142 |
+
# 型チェック
|
143 |
+
if isinstance(_query, str):
|
144 |
+
_query = [_query]
|
145 |
+
|
146 |
+
# Ruriの前処理
|
147 |
+
_query = [f"クエリ: {q}" for q in _query]
|
148 |
+
|
149 |
+
# ベクトル化
|
150 |
+
embeddings_queries = self.embedder.embed(_query)
|
151 |
+
|
152 |
+
# ランキングtop-nをクエリ毎に取得
|
153 |
+
result = []
|
154 |
+
for embeddings_query in tqdm(embeddings_queries):
|
155 |
+
# Voyagerのインデックスを探索
|
156 |
+
neighbors_indices, distances = self.index.query(embeddings_query, k=n)
|
157 |
+
# 類似度スコア
|
158 |
+
df_res = deepcopy(self.dataset.iloc[neighbors_indices])
|
159 |
+
df_res["score"] = distances
|
160 |
+
# ランク
|
161 |
+
df_res["rank"] = deepcopy(df_res.reset_index()).index
|
162 |
+
|
163 |
+
result.append(df_res)
|
164 |
+
|
165 |
+
return result
|