Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,406 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
-
import plotly.graph_objects as go
|
| 5 |
-
from datetime import datetime, timedelta
|
| 6 |
-
import yfinance as yf
|
| 7 |
-
from statsmodels.tsa.arima.model import ARIMA
|
| 8 |
-
from prophet import Prophet
|
| 9 |
-
import warnings
|
| 10 |
-
warnings.filterwarnings('ignore')
|
| 11 |
-
|
| 12 |
-
# NO PRE-TRAINED MODELS - Train on demand with user's data
|
| 13 |
-
# This avoids the 50GB storage limit issue
|
| 14 |
-
|
| 15 |
-
def fetch_stock_data(ticker, days=730):
|
| 16 |
-
"""Fetch stock data from Yahoo Finance"""
|
| 17 |
-
try:
|
| 18 |
-
end_date = datetime.now()
|
| 19 |
-
start_date = end_date - timedelta(days=days)
|
| 20 |
-
df = yf.download(ticker, start=start_date, end=end_date, progress=False)
|
| 21 |
-
if df.empty:
|
| 22 |
-
return None, f"No data found for ticker: {ticker}"
|
| 23 |
-
df = df[['Close']].copy()
|
| 24 |
-
df.columns = ['Price']
|
| 25 |
-
df = df.dropna()
|
| 26 |
-
return df, None
|
| 27 |
-
except Exception as e:
|
| 28 |
-
return None, str(e)
|
| 29 |
-
|
| 30 |
-
def make_arima_forecast(data, days):
|
| 31 |
-
"""Train ARIMA and make forecast"""
|
| 32 |
-
try:
|
| 33 |
-
# Train ARIMA model on-the-fly
|
| 34 |
-
model = ARIMA(data['Price'], order=(1, 1, 1))
|
| 35 |
-
fitted = model.fit()
|
| 36 |
-
forecast = fitted.forecast(steps=days)
|
| 37 |
-
return forecast.values
|
| 38 |
-
except Exception as e:
|
| 39 |
-
print(f"ARIMA Error: {e}")
|
| 40 |
-
return None
|
| 41 |
-
|
| 42 |
-
def make_prophet_forecast(data, days):
|
| 43 |
-
"""Train Prophet and make forecast"""
|
| 44 |
-
try:
|
| 45 |
-
# Prepare data for Prophet
|
| 46 |
-
prophet_data = pd.DataFrame({
|
| 47 |
-
'ds': data.index,
|
| 48 |
-
'y': data['Price'].values
|
| 49 |
-
})
|
| 50 |
-
|
| 51 |
-
# Create and train model on-the-fly
|
| 52 |
-
model = Prophet(
|
| 53 |
-
daily_seasonality=False,
|
| 54 |
-
weekly_seasonality=True,
|
| 55 |
-
yearly_seasonality=True,
|
| 56 |
-
changepoint_prior_scale=0.05,
|
| 57 |
-
seasonality_mode='multiplicative'
|
| 58 |
-
)
|
| 59 |
-
model.fit(prophet_data)
|
| 60 |
-
|
| 61 |
-
# Make forecast
|
| 62 |
-
future = model.make_future_dataframe(periods=days)
|
| 63 |
-
forecast = model.predict(future)
|
| 64 |
-
return forecast['yhat'].tail(days).values
|
| 65 |
-
except Exception as e:
|
| 66 |
-
print(f"Prophet Error: {e}")
|
| 67 |
-
return None
|
| 68 |
-
|
| 69 |
-
def make_simple_ml_forecast(data, days):
|
| 70 |
-
"""Simple exponential smoothing forecast (lightweight alternative to LSTM)"""
|
| 71 |
-
try:
|
| 72 |
-
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
| 73 |
-
|
| 74 |
-
# Train exponential smoothing model
|
| 75 |
-
model = ExponentialSmoothing(
|
| 76 |
-
data['Price'],
|
| 77 |
-
seasonal_periods=30,
|
| 78 |
-
trend='add',
|
| 79 |
-
seasonal='add'
|
| 80 |
-
)
|
| 81 |
-
fitted = model.fit()
|
| 82 |
-
forecast = fitted.forecast(steps=days)
|
| 83 |
-
return forecast.values
|
| 84 |
-
except Exception as e:
|
| 85 |
-
print(f"ML Forecast Error: {e}")
|
| 86 |
-
return None
|
| 87 |
-
|
| 88 |
-
def calculate_moving_average_forecast(data, days, window=20):
|
| 89 |
-
"""Simple moving average forecast"""
|
| 90 |
-
try:
|
| 91 |
-
ma = data['Price'].rolling(window=window).mean().iloc[-1]
|
| 92 |
-
trend = (data['Price'].iloc[-1] - data['Price'].iloc[-window]) / window
|
| 93 |
-
forecast = [ma + trend * i for i in range(1, days + 1)]
|
| 94 |
-
return np.array(forecast)
|
| 95 |
-
except Exception as e:
|
| 96 |
-
print(f"MA Error: {e}")
|
| 97 |
-
return None
|
| 98 |
-
|
| 99 |
-
def create_forecast_plot(historical_data, forecasts, ticker, model_names):
|
| 100 |
-
"""Create interactive plotly chart"""
|
| 101 |
-
fig = go.Figure()
|
| 102 |
-
|
| 103 |
-
# Show last 90 days of historical data for clarity
|
| 104 |
-
recent_data = historical_data.tail(90)
|
| 105 |
-
|
| 106 |
-
# Historical data
|
| 107 |
-
fig.add_trace(go.Scatter(
|
| 108 |
-
x=recent_data.index,
|
| 109 |
-
y=recent_data['Price'],
|
| 110 |
-
mode='lines',
|
| 111 |
-
name='Historical Price',
|
| 112 |
-
line=dict(color='blue', width=2)
|
| 113 |
-
))
|
| 114 |
-
|
| 115 |
-
# Generate future dates
|
| 116 |
-
last_date = historical_data.index[-1]
|
| 117 |
-
future_dates = pd.date_range(start=last_date + timedelta(days=1),
|
| 118 |
-
periods=len(forecasts[0]))
|
| 119 |
-
|
| 120 |
-
# Plot forecasts
|
| 121 |
-
colors = ['red', 'purple', 'orange', 'green']
|
| 122 |
-
for i, (forecast, name) in enumerate(zip(forecasts, model_names)):
|
| 123 |
-
if forecast is not None:
|
| 124 |
-
fig.add_trace(go.Scatter(
|
| 125 |
-
x=future_dates,
|
| 126 |
-
y=forecast,
|
| 127 |
-
mode='lines+markers',
|
| 128 |
-
name=f'{name} Forecast',
|
| 129 |
-
line=dict(color=colors[i], width=2, dash='dash'),
|
| 130 |
-
marker=dict(size=4)
|
| 131 |
-
))
|
| 132 |
-
|
| 133 |
-
# Add vertical line at prediction start
|
| 134 |
-
fig.add_vline(
|
| 135 |
-
x=last_date,
|
| 136 |
-
line_dash="dash",
|
| 137 |
-
line_color="gray",
|
| 138 |
-
annotation_text="Forecast Start"
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
fig.update_layout(
|
| 142 |
-
title=f'{ticker} Stock Price Forecast',
|
| 143 |
-
xaxis_title='Date',
|
| 144 |
-
yaxis_title='Price ($)',
|
| 145 |
-
hovermode='x unified',
|
| 146 |
-
template='plotly_white',
|
| 147 |
-
height=600,
|
| 148 |
-
showlegend=True,
|
| 149 |
-
legend=dict(
|
| 150 |
-
yanchor="top",
|
| 151 |
-
y=0.99,
|
| 152 |
-
xanchor="left",
|
| 153 |
-
x=0.01,
|
| 154 |
-
bgcolor="rgba(255, 255, 255, 0.8)"
|
| 155 |
-
)
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
return fig
|
| 159 |
-
|
| 160 |
-
def predict_stock(ticker, forecast_days, model_choice):
|
| 161 |
-
"""Main prediction function"""
|
| 162 |
-
# Validate inputs
|
| 163 |
-
if not ticker:
|
| 164 |
-
return None, "❌ Please enter a stock ticker symbol", None
|
| 165 |
-
|
| 166 |
-
ticker = ticker.upper().strip()
|
| 167 |
-
|
| 168 |
-
# Show loading message
|
| 169 |
-
status_msg = f"🔄 Fetching data for {ticker}..."
|
| 170 |
-
|
| 171 |
-
# Fetch data (2 years for better training)
|
| 172 |
-
data, error = fetch_stock_data(ticker, days=730)
|
| 173 |
-
if error:
|
| 174 |
-
return None, f"❌ Error: {error}", None
|
| 175 |
-
|
| 176 |
-
if len(data) < 60:
|
| 177 |
-
return None, f"❌ Insufficient data for {ticker}. Need at least 60 days of history.", None
|
| 178 |
-
|
| 179 |
-
status_msg += f"\n✅ Found {len(data)} days of data\n🔄 Training models..."
|
| 180 |
-
|
| 181 |
-
# Make forecasts based on model choice
|
| 182 |
-
forecasts = []
|
| 183 |
-
model_names = []
|
| 184 |
-
|
| 185 |
-
if model_choice in ["All Models", "ARIMA"]:
|
| 186 |
-
arima_forecast = make_arima_forecast(data, forecast_days)
|
| 187 |
-
if arima_forecast is not None:
|
| 188 |
-
forecasts.append(arima_forecast)
|
| 189 |
-
model_names.append("ARIMA")
|
| 190 |
-
|
| 191 |
-
if model_choice in ["All Models", "Prophet"]:
|
| 192 |
-
prophet_forecast = make_prophet_forecast(data, forecast_days)
|
| 193 |
-
if prophet_forecast is not None:
|
| 194 |
-
forecasts.append(prophet_forecast)
|
| 195 |
-
model_names.append("Prophet")
|
| 196 |
-
|
| 197 |
-
if model_choice in ["All Models", "Exp. Smoothing"]:
|
| 198 |
-
ml_forecast = make_simple_ml_forecast(data, forecast_days)
|
| 199 |
-
if ml_forecast is not None:
|
| 200 |
-
forecasts.append(ml_forecast)
|
| 201 |
-
model_names.append("Exp. Smoothing")
|
| 202 |
-
|
| 203 |
-
if model_choice in ["All Models", "Moving Average"]:
|
| 204 |
-
ma_forecast = calculate_moving_average_forecast(data, forecast_days)
|
| 205 |
-
if ma_forecast is not None:
|
| 206 |
-
forecasts.append(ma_forecast)
|
| 207 |
-
model_names.append("Moving Average")
|
| 208 |
-
|
| 209 |
-
if not forecasts:
|
| 210 |
-
return None, "❌ Failed to generate forecasts. Please try again.", None
|
| 211 |
-
|
| 212 |
-
# Create plot
|
| 213 |
-
fig = create_forecast_plot(data, forecasts, ticker, model_names)
|
| 214 |
-
|
| 215 |
-
# Create forecast table
|
| 216 |
-
future_dates = pd.date_range(
|
| 217 |
-
start=data.index[-1] + timedelta(days=1),
|
| 218 |
-
periods=forecast_days
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
forecast_df = pd.DataFrame({'Date': future_dates.strftime('%Y-%m-%d')})
|
| 222 |
-
for forecast, name in zip(forecasts, model_names):
|
| 223 |
-
forecast_df[f'{name} ($)'] = np.round(forecast, 2)
|
| 224 |
-
|
| 225 |
-
# Calculate statistics
|
| 226 |
-
current_price = data['Price'].iloc[-1]
|
| 227 |
-
avg_forecast = np.mean([f[-1] for f in forecasts])
|
| 228 |
-
avg_change = ((avg_forecast - current_price) / current_price) * 100
|
| 229 |
-
|
| 230 |
-
# Summary statistics
|
| 231 |
-
summary = f"""
|
| 232 |
-
## 📊 Forecast Summary for **{ticker}**
|
| 233 |
-
|
| 234 |
-
### Current Information
|
| 235 |
-
- **Current Price**: ${current_price:.2f}
|
| 236 |
-
- **Data Points**: {len(data)} days
|
| 237 |
-
- **Last Updated**: {data.index[-1].strftime('%Y-%m-%d')}
|
| 238 |
-
|
| 239 |
-
### Forecast Details
|
| 240 |
-
- **Forecast Period**: {forecast_days} days
|
| 241 |
-
- **Models Used**: {', '.join(model_names)}
|
| 242 |
-
- **End Date**: {future_dates[-1].strftime('%Y-%m-%d')}
|
| 243 |
-
|
| 244 |
-
### Predicted Prices (Day {forecast_days})
|
| 245 |
-
"""
|
| 246 |
-
|
| 247 |
-
for forecast, name in zip(forecasts, model_names):
|
| 248 |
-
final_price = forecast[-1]
|
| 249 |
-
change = ((final_price - current_price) / current_price) * 100
|
| 250 |
-
emoji = "📈" if change > 0 else "📉"
|
| 251 |
-
summary += f"\n{emoji} **{name}**: ${final_price:.2f} ({change:+.2f}%)"
|
| 252 |
-
|
| 253 |
-
summary += f"""
|
| 254 |
-
|
| 255 |
-
### Average Prediction
|
| 256 |
-
- **Average Price**: ${avg_forecast:.2f}
|
| 257 |
-
- **Expected Change**: {avg_change:+.2f}%
|
| 258 |
-
|
| 259 |
-
---
|
| 260 |
-
⚠️ **Risk Warning**: Past performance does not guarantee future results. Use for research only.
|
| 261 |
-
"""
|
| 262 |
-
|
| 263 |
-
return fig, summary, forecast_df
|
| 264 |
-
|
| 265 |
-
# Create Gradio Interface
|
| 266 |
-
with gr.Blocks(title="Stock Price Forecasting", theme=gr.themes.Soft()) as demo:
|
| 267 |
-
gr.Markdown(
|
| 268 |
-
"""
|
| 269 |
-
# 📈 AI Stock Price Forecasting
|
| 270 |
-
|
| 271 |
-
### Predict future stock prices using multiple time-series models
|
| 272 |
-
|
| 273 |
-
This app trains models **in real-time** using the latest stock data. No pre-trained models needed!
|
| 274 |
-
|
| 275 |
-
**✨ Features:**
|
| 276 |
-
- Real-time data from Yahoo Finance
|
| 277 |
-
- Multiple forecasting algorithms
|
| 278 |
-
- Interactive visualizations
|
| 279 |
-
- No storage limits - models train on demand
|
| 280 |
-
|
| 281 |
-
---
|
| 282 |
-
"""
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
with gr.Row():
|
| 286 |
-
with gr.Column(scale=1):
|
| 287 |
-
gr.Markdown("### 🎯 Input Parameters")
|
| 288 |
-
|
| 289 |
-
ticker_input = gr.Textbox(
|
| 290 |
-
label="📊 Stock Ticker Symbol",
|
| 291 |
-
placeholder="e.g., AAPL, GOOGL, TSLA, MSFT",
|
| 292 |
-
value="AAPL",
|
| 293 |
-
info="Enter any valid stock ticker"
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
forecast_days = gr.Slider(
|
| 297 |
-
minimum=7,
|
| 298 |
-
maximum=90,
|
| 299 |
-
value=30,
|
| 300 |
-
step=1,
|
| 301 |
-
label="📅 Forecast Period (Days)",
|
| 302 |
-
info="Number of days to forecast"
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
model_choice = gr.Radio(
|
| 306 |
-
choices=["All Models", "ARIMA", "Prophet", "Exp. Smoothing", "Moving Average"],
|
| 307 |
-
value="All Models",
|
| 308 |
-
label="🤖 Select Model(s)",
|
| 309 |
-
info="Choose which forecasting model to use"
|
| 310 |
-
)
|
| 311 |
-
|
| 312 |
-
predict_btn = gr.Button(
|
| 313 |
-
"🔮 Generate Forecast",
|
| 314 |
-
variant="primary",
|
| 315 |
-
size="lg",
|
| 316 |
-
scale=1
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
gr.Markdown(
|
| 320 |
-
"""
|
| 321 |
-
### 💡 Quick Tips
|
| 322 |
-
- Use 30 days for short-term
|
| 323 |
-
- Use 60-90 days for trends
|
| 324 |
-
- "All Models" shows comparison
|
| 325 |
-
"""
|
| 326 |
-
)
|
| 327 |
-
|
| 328 |
-
with gr.Column(scale=2):
|
| 329 |
-
output_plot = gr.Plot(label="📈 Forecast Visualization")
|
| 330 |
-
|
| 331 |
-
with gr.Row():
|
| 332 |
-
with gr.Column():
|
| 333 |
-
output_summary = gr.Markdown(label="📋 Analysis Summary")
|
| 334 |
-
|
| 335 |
-
with gr.Row():
|
| 336 |
-
output_table = gr.Dataframe(
|
| 337 |
-
label="📊 Detailed Forecast Table",
|
| 338 |
-
wrap=True,
|
| 339 |
-
interactive=False,
|
| 340 |
-
height=400
|
| 341 |
-
)
|
| 342 |
-
|
| 343 |
-
# Examples
|
| 344 |
-
gr.Markdown("### 🎯 Try These Examples")
|
| 345 |
-
gr.Examples(
|
| 346 |
-
examples=[
|
| 347 |
-
["AAPL", 30, "All Models"],
|
| 348 |
-
["GOOGL", 14, "Prophet"],
|
| 349 |
-
["TSLA", 60, "ARIMA"],
|
| 350 |
-
["MSFT", 45, "Exp. Smoothing"],
|
| 351 |
-
["NVDA", 30, "All Models"],
|
| 352 |
-
],
|
| 353 |
-
inputs=[ticker_input, forecast_days, model_choice],
|
| 354 |
-
label="Popular Stocks"
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
# Connect the button to the function
|
| 358 |
-
predict_btn.click(
|
| 359 |
-
fn=predict_stock,
|
| 360 |
-
inputs=[ticker_input, forecast_days, model_choice],
|
| 361 |
-
outputs=[output_plot, output_summary, output_table]
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
gr.Markdown(
|
| 365 |
-
"""
|
| 366 |
-
---
|
| 367 |
-
## 📚 About the Models
|
| 368 |
-
|
| 369 |
-
| Model | Best For | Speed | Accuracy |
|
| 370 |
-
|-------|----------|-------|----------|
|
| 371 |
-
| **ARIMA** | Short-term, stationary data | ⚡⚡⚡ Fast | ⭐⭐⭐ |
|
| 372 |
-
| **Prophet** | Seasonality, trends | ⚡⚡ Medium | ⭐⭐⭐⭐ |
|
| 373 |
-
| **Exp. Smoothing** | Smooth trends | ⚡⚡⚡ Fast | ⭐⭐⭐ |
|
| 374 |
-
| **Moving Average** | Simple baseline | ⚡⚡⚡⚡ Very Fast | ⭐⭐ |
|
| 375 |
-
|
| 376 |
-
## ⚠️ Important Disclaimer
|
| 377 |
-
|
| 378 |
-
**This tool is for educational and research purposes only.**
|
| 379 |
-
|
| 380 |
-
- Stock predictions are inherently uncertain
|
| 381 |
-
- Past performance ≠ future results
|
| 382 |
-
- Always do your own research
|
| 383 |
-
- Consult financial advisors before investing
|
| 384 |
-
- Never invest more than you can afford to lose
|
| 385 |
-
|
| 386 |
-
## 🔒 Privacy & Data
|
| 387 |
-
|
| 388 |
-
- No data is stored permanently
|
| 389 |
-
- Models train fresh for each prediction
|
| 390 |
-
- Stock data fetched from Yahoo Finance API
|
| 391 |
-
- No personal information collected
|
| 392 |
-
|
| 393 |
-
---
|
| 394 |
-
|
| 395 |
-
**Made with ❤️ using Gradio & Python**
|
| 396 |
-
"""
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
# Launch the app
|
| 400 |
-
if __name__ == "__main__":
|
| 401 |
-
demo.launch(
|
| 402 |
-
share=False,
|
| 403 |
-
show_error=True,
|
| 404 |
-
server_name="0.0.0.0",
|
| 405 |
-
server_port=7860
|
| 406 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|