|
import streamlit as st |
|
import tensorflow as tf |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
from imutils import perspective |
|
from scipy.spatial import distance as dist |
|
|
|
model=tf.keras.models.load_model("dental_xray_seg.h5") |
|
|
|
st.header("Segmentation of Teeth in Panoramic X-ray Image") |
|
|
|
examples=["teeth_01.png","teeth_02.png","teeth_03.png","teeth_04.png"] |
|
|
|
def load_image(image_file): |
|
img = Image.open(image_file) |
|
img_gray = img.convert('L') |
|
img_np = np.array(img_gray) |
|
return img_np |
|
|
|
def convert_one_channel(img): |
|
if len(img.shape)>2: |
|
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
return img |
|
|
|
def convert_rgb(img): |
|
if len(img.shape)==2: |
|
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) |
|
return img |
|
|
|
def midpoint(ptA, ptB): |
|
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) |
|
|
|
def CCA_Analysis(orig_image,predict_image,erode_iteration,open_iteration): |
|
kernel1 =( np.ones((5,5), dtype=np.float32)) |
|
kernel_sharpening = np.array([[-1,-1,-1], |
|
[-1,9,-1], |
|
[-1,-1,-1]]) |
|
image = predict_image |
|
image2 =orig_image |
|
image=cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel1,iterations=open_iteration ) |
|
image = cv2.filter2D(image, -1, kernel_sharpening) |
|
image=cv2.erode(image,kernel1,iterations =erode_iteration) |
|
image=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] |
|
labels=cv2.connectedComponents(thresh,connectivity=8)[1] |
|
a=np.unique(labels) |
|
count2=0 |
|
for label in a: |
|
if label == 0: |
|
continue |
|
|
|
|
|
mask = np.zeros(thresh.shape, dtype="uint8") |
|
mask[labels == label] = 255 |
|
|
|
cnts,hieararch = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
cnts = cnts[0] |
|
c_area = cv2.contourArea(cnts) |
|
|
|
if c_area>2000: |
|
count2+=1 |
|
|
|
(x,y),radius = cv2.minEnclosingCircle(cnts) |
|
rect = cv2.minAreaRect(cnts) |
|
box = cv2.boxPoints(rect) |
|
box = np.array(box, dtype="int") |
|
box = perspective.order_points(box) |
|
color1 = (list(np.random.choice(range(150), size=3))) |
|
color =[int(color1[0]), int(color1[1]), int(color1[2])] |
|
cv2.drawContours(image2,[box.astype("int")],0,color,2) |
|
(tl,tr,br,bl)=box |
|
|
|
(tltrX,tltrY)=midpoint(tl,tr) |
|
(blbrX,blbrY)=midpoint(bl,br) |
|
|
|
|
|
(tlblX,tlblY)=midpoint(tl,bl) |
|
(trbrX,trbrY)=midpoint(tr,br) |
|
|
|
cv2.circle(image2, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) |
|
cv2.circle(image2, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) |
|
cv2.circle(image2, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) |
|
cv2.circle(image2, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) |
|
cv2.line(image2, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),color, 2) |
|
cv2.line(image2, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),color, 2) |
|
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) |
|
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) |
|
|
|
|
|
|
|
pixelsPerMetric=1 |
|
dimA = dA * pixelsPerMetric |
|
dimB = dB *pixelsPerMetric |
|
cv2.putText(image2, "{:.1f}pixel".format(dimA),(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2) |
|
cv2.putText(image2, "{:.1f}pixel".format(dimB),(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2) |
|
cv2.putText(image2, "{:.1f}".format(label),(int(tltrX - 35), int(tltrY - 5)), cv2.FONT_HERSHEY_SIMPLEX,0.65, color, 2) |
|
teeth_count=count2 |
|
return image2,teeth_count |
|
|
|
def detect_decays_static_th(images, dental_masks=None, threshhold=0.9): |
|
decay_masks = [] |
|
for image, dental_mask in zip(images, dental_masks): |
|
decay_mask = np.zeros_like(dental_mask) |
|
image_masked_with_dental_mask = image * dental_mask |
|
decay_mask[image_masked_with_dental_mask > threshhold*255] = 1 |
|
decay_masks.append(decay_mask) |
|
decay_masks = np.array(decay_masks) |
|
return decay_masks |
|
|
|
|
|
st.subheader("Upload Dental Panoramic X-ray Image") |
|
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"]) |
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
with col1: |
|
ex=load_image(examples[0]) |
|
st.image(ex,width=200) |
|
if st.button('Example 1'): |
|
image_file=examples[0] |
|
|
|
with col2: |
|
ex1=load_image(examples[1]) |
|
st.image(ex1,width=200) |
|
if st.button('Example 2'): |
|
image_file=examples[1] |
|
|
|
with col3: |
|
ex2=load_image(examples[2]) |
|
st.image(ex2,width=200) |
|
if st.button('Example 3'): |
|
image_file=examples[2] |
|
|
|
with col4: |
|
ex2=load_image(examples[3]) |
|
st.image(ex2,width=200) |
|
if st.button('Example 4'): |
|
image_file=examples[3] |
|
|
|
if image_file is not None: |
|
|
|
image_original = Image.open(image_file) |
|
image=np.asarray(image_original) |
|
image = convert_rgb(image) |
|
st.subheader("Original Image") |
|
st.image(image,width=1100) |
|
|
|
st.text("Making A Prediction ....") |
|
|
|
img=np.asarray(image) |
|
|
|
img_cv=convert_one_channel(img) |
|
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4) |
|
img_cv=np.float32(img_cv/255) |
|
|
|
img_cv=np.reshape(img_cv,(1,512,512,1)) |
|
prediction=model.predict(img_cv) |
|
predicted=prediction[0] |
|
predicted_rgb = np.expand_dims(predicted, axis=-1) |
|
plt.imsave("predict.png",predicted_rgb) |
|
|
|
predict1 = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4) |
|
img_dc=convert_one_channel(img) |
|
decay_mask = detect_decays_static_th(img_dc, predict1) |
|
|
|
|
|
mask = np.uint8(predict1 * 255) |
|
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY) |
|
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
img = cv2.drawContours(img, cnts, -1, (0, 0, 255), 2) |
|
|
|
mask = np.uint8(decay_mask * 255) |
|
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY) |
|
cnts, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
img = cv2.fillPoly(img, cnts, (255, 0, 0)) |
|
|
|
if img is not None : |
|
st.subheader("Predicted teeth shape + caries zones") |
|
st.write(img.shape) |
|
st.image(img,width=1100) |
|
|
|
image=np.asarray(image_original) |
|
image = convert_rgb(image) |
|
if image.shape[1] < 3000: |
|
image = cv2.resize(image,(3100,1150),interpolation=cv2.INTER_LANCZOS4) |
|
predicted=cv2.imread("predict.png") |
|
predicted = cv2.resize(predicted, (image.shape[1],image.shape[0]), interpolation=cv2.INTER_LANCZOS4) |
|
cca_result,teeth_count=CCA_Analysis(image,predicted,3,2) |
|
|
|
if cca_result is not None : |
|
st.subheader("Seperate predicted teeth") |
|
st.write(cca_result.shape) |
|
st.image(cca_result,width=1100) |
|
|
|
st.text("Teeth Count = " + str(teeth_count)) |
|
|
|
st.text("DONE ! ....") |
|
|
|
|