Shadhil commited on
Commit
0b5f327
1 Parent(s): bcc00b1

Upload 340 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. __pycache__/app.cpython-38.pyc +0 -0
  3. checkpoints/30_net_gen.pth +3 -0
  4. checkpoints/BFM/.gitkeep +0 -0
  5. checkpoints/BFM/01_MorphableModel.mat +3 -0
  6. checkpoints/BFM/BFM_exp_idx.mat +0 -0
  7. checkpoints/BFM/BFM_front_idx.mat +0 -0
  8. checkpoints/BFM/BFM_model_front.mat +3 -0
  9. checkpoints/BFM/Exp_Pca.bin +3 -0
  10. checkpoints/BFM/facemodel_info.mat +0 -0
  11. checkpoints/BFM/select_vertex_id.mat +0 -0
  12. checkpoints/BFM/similarity_Lm3D_all.mat +0 -0
  13. checkpoints/BFM/std_exp.txt +1 -0
  14. checkpoints/DNet.pt +3 -0
  15. checkpoints/ENet.pth +3 -0
  16. checkpoints/GFPGANv1.3.pth +3 -0
  17. checkpoints/GPEN-BFR-512.pth +3 -0
  18. checkpoints/LNet.pth +3 -0
  19. checkpoints/ParseNet-latest.pth +3 -0
  20. checkpoints/RetinaFace-R50.pth +3 -0
  21. checkpoints/expression.mat +0 -0
  22. checkpoints/face3d_pretrain_epoch_20.pth +3 -0
  23. checkpoints/shape_predictor_68_face_landmarks.dat +3 -0
  24. models/DNet.py +118 -0
  25. models/ENet.py +139 -0
  26. models/LNet.py +139 -0
  27. models/__init__.py +37 -0
  28. models/__pycache__/DNet.cpython-38.pyc +0 -0
  29. models/__pycache__/ENet.cpython-38.pyc +0 -0
  30. models/__pycache__/LNet.cpython-38.pyc +0 -0
  31. models/__pycache__/__init__.cpython-38.pyc +0 -0
  32. models/__pycache__/base_blocks.cpython-38.pyc +0 -0
  33. models/__pycache__/ffc.cpython-38.pyc +0 -0
  34. models/__pycache__/transformer.cpython-38.pyc +0 -0
  35. models/base_blocks.py +554 -0
  36. models/ffc.py +233 -0
  37. models/transformer.py +119 -0
  38. results/1.mp4 +0 -0
  39. temp/1.mp4_coeffs.npy +3 -0
  40. temp/1.mp4_landmarks.txt +0 -0
  41. temp/1.mp4_stablized.npy +3 -0
  42. temp/1.mp4x12_landmarks.txt +0 -0
  43. temp/dropbox5.mp4_coeffs.npy +3 -0
  44. temp/dropbox5.mp4_landmarks.txt +0 -0
  45. temp/dropbox5.mp4_stablized.npy +3 -0
  46. temp/dropbox5.mp4x12_landmarks.txt +0 -0
  47. temp/temp/result.mp4 +0 -0
  48. temp/temp/temp.wav +0 -0
  49. third_part/GFPGAN/LICENSE +351 -0
  50. third_part/GFPGAN/gfpgan/__init__.py +8 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoints/BFM/01_MorphableModel.mat filter=lfs diff=lfs merge=lfs -text
37
+ checkpoints/BFM/BFM_model_front.mat filter=lfs diff=lfs merge=lfs -text
38
+ checkpoints/shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
__pycache__/app.cpython-38.pyc ADDED
Binary file (2.03 kB). View file
 
checkpoints/30_net_gen.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4db83e1727128e2c5de27bc80d2929586535e04a709af45016a63e7cf7c46b0c
3
+ size 33877439
checkpoints/BFM/.gitkeep ADDED
File without changes
checkpoints/BFM/01_MorphableModel.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b1f0742db356a3b1568a8365a06f5b0fe0ab687ac1c3068c803666cbd4d8e2
3
+ size 240875364
checkpoints/BFM/BFM_exp_idx.mat ADDED
Binary file (91.9 kB). View file
 
checkpoints/BFM/BFM_front_idx.mat ADDED
Binary file (44.9 kB). View file
 
checkpoints/BFM/BFM_model_front.mat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae3ff544aba3246c5f2c117f2be76fa44a7b76145326aae0bbfbfb564d4f82af
3
+ size 127170280
checkpoints/BFM/Exp_Pca.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f31380e6cbdaf2aeec698db220bac4f221946e4d551d88c092d47ec49b1726
3
+ size 51086404
checkpoints/BFM/facemodel_info.mat ADDED
Binary file (739 kB). View file
 
checkpoints/BFM/select_vertex_id.mat ADDED
Binary file (62.3 kB). View file
 
checkpoints/BFM/similarity_Lm3D_all.mat ADDED
Binary file (994 Bytes). View file
 
checkpoints/BFM/std_exp.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 453980 257264 263068 211890 135873 184721 47055.6 72732 62787.4 106226 56708.5 51439.8 34887.1 44378.7 51813.4 31030.7 23354.9 23128.1 19400 21827.6 22767.7 22057.4 19894.3 16172.8 17142.7 10035.3 14727.5 12972.5 10763.8 8953.93 8682.62 8941.81 6342.3 5205.3 7065.65 6083.35 6678.88 4666.63 5082.89 5134.76 4908.16 3964.93 3739.95 3180.09 2470.45 1866.62 1624.71 2423.74 1668.53 1471.65 1194.52 782.102 815.044 835.782 834.937 744.496 575.146 633.76 705.685 753.409 620.306 673.326 766.189 619.866 559.93 357.264 396.472 556.849 455.048 460.592 400.735 326.702 279.428 291.535 326.584 305.664 287.816 283.642 276.19
checkpoints/DNet.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41220d2973c0ba2eab6e8f17ed00711aef5a0d76d19808f885dc0e3251df2e80
3
+ size 180424655
checkpoints/ENet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:967ee3ed857619cedd92b6407dc8a124cbfe763cc11cad58316fe21271a8928f
3
+ size 573261168
checkpoints/GFPGANv1.3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c953a88f2727c85c3d9ae72e2bd4846bbaf59fe6972ad94130e23e7017524a70
3
+ size 348632874
checkpoints/GPEN-BFR-512.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1002c41add95b0decad69604d80455576f7187dd99ca16bd611bcfd44c10b51
3
+ size 284085738
checkpoints/LNet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ae06fef0454c421b828cc53e8d4b9c92d990867a858ea7bb9661ab6cf6ab774
3
+ size 1534697728
checkpoints/ParseNet-latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d558d8d0e42c20224f13cf5a29c79eba2d59913419f945545d8cf7b72920de2
3
+ size 85331193
checkpoints/RetinaFace-R50.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
3
+ size 109497761
checkpoints/expression.mat ADDED
Binary file (1.46 kB). View file
 
checkpoints/face3d_pretrain_epoch_20.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d17a6b23457b521801baae583cb6a58f7238fe6721fc3d65d76407460e9149b
3
+ size 288860037
checkpoints/shape_predictor_68_face_landmarks.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f
3
+ size 99693937
models/DNet.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO
2
+ import functools
3
+ import numpy as np
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+
9
+ from utils import flow_util
10
+ from models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
11
+
12
+ # DNet
13
+ class DNet(nn.Module):
14
+ def __init__(self):
15
+ super(DNet, self).__init__()
16
+ self.mapping_net = MappingNet()
17
+ self.warpping_net = WarpingNet()
18
+ self.editing_net = EditingNet()
19
+
20
+ def forward(self, input_image, driving_source, stage=None):
21
+ if stage == 'warp':
22
+ descriptor = self.mapping_net(driving_source)
23
+ output = self.warpping_net(input_image, descriptor)
24
+ else:
25
+ descriptor = self.mapping_net(driving_source)
26
+ output = self.warpping_net(input_image, descriptor)
27
+ output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
28
+ return output
29
+
30
+ class MappingNet(nn.Module):
31
+ def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3):
32
+ super( MappingNet, self).__init__()
33
+
34
+ self.layer = layer
35
+ nonlinearity = nn.LeakyReLU(0.1)
36
+
37
+ self.first = nn.Sequential(
38
+ torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
39
+
40
+ for i in range(layer):
41
+ net = nn.Sequential(nonlinearity,
42
+ torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
43
+ setattr(self, 'encoder' + str(i), net)
44
+
45
+ self.pooling = nn.AdaptiveAvgPool1d(1)
46
+ self.output_nc = descriptor_nc
47
+
48
+ def forward(self, input_3dmm):
49
+ out = self.first(input_3dmm)
50
+ for i in range(self.layer):
51
+ model = getattr(self, 'encoder' + str(i))
52
+ out = model(out) + out[:,:,3:-3]
53
+ out = self.pooling(out)
54
+ return out
55
+
56
+ class WarpingNet(nn.Module):
57
+ def __init__(
58
+ self,
59
+ image_nc=3,
60
+ descriptor_nc=256,
61
+ base_nc=32,
62
+ max_nc=256,
63
+ encoder_layer=5,
64
+ decoder_layer=3,
65
+ use_spect=False
66
+ ):
67
+ super( WarpingNet, self).__init__()
68
+
69
+ nonlinearity = nn.LeakyReLU(0.1)
70
+ norm_layer = functools.partial(LayerNorm2d, affine=True)
71
+ kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
72
+
73
+ self.descriptor_nc = descriptor_nc
74
+ self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
75
+ max_nc, encoder_layer, decoder_layer, **kwargs)
76
+
77
+ self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
78
+ nonlinearity,
79
+ nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
80
+
81
+ self.pool = nn.AdaptiveAvgPool2d(1)
82
+
83
+ def forward(self, input_image, descriptor):
84
+ final_output={}
85
+ output = self.hourglass(input_image, descriptor)
86
+ final_output['flow_field'] = self.flow_out(output)
87
+
88
+ deformation = flow_util.convert_flow_to_deformation(final_output['flow_field'])
89
+ final_output['warp_image'] = flow_util.warp_image(input_image, deformation)
90
+ return final_output
91
+
92
+
93
+ class EditingNet(nn.Module):
94
+ def __init__(
95
+ self,
96
+ image_nc=3,
97
+ descriptor_nc=256,
98
+ layer=3,
99
+ base_nc=64,
100
+ max_nc=256,
101
+ num_res_blocks=2,
102
+ use_spect=False):
103
+ super(EditingNet, self).__init__()
104
+
105
+ nonlinearity = nn.LeakyReLU(0.1)
106
+ norm_layer = functools.partial(LayerNorm2d, affine=True)
107
+ kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
108
+ self.descriptor_nc = descriptor_nc
109
+
110
+ # encoder part
111
+ self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
112
+ self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
113
+
114
+ def forward(self, input_image, warp_image, descriptor):
115
+ x = torch.cat([input_image, warp_image], 1)
116
+ x = self.encoder(x)
117
+ gen_image = self.decoder(x, descriptor)
118
+ return gen_image
models/ENet.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from models.base_blocks import ResBlock, StyleConv, ToRGB
6
+
7
+
8
+ class ENet(nn.Module):
9
+ def __init__(
10
+ self,
11
+ num_style_feat=512,
12
+ lnet=None,
13
+ concat=False
14
+ ):
15
+ super(ENet, self).__init__()
16
+
17
+ self.low_res = lnet
18
+ for param in self.low_res.parameters():
19
+ param.requires_grad = False
20
+
21
+ channel_multiplier, narrow = 2, 1
22
+ channels = {
23
+ '4': int(512 * narrow),
24
+ '8': int(512 * narrow),
25
+ '16': int(512 * narrow),
26
+ '32': int(512 * narrow),
27
+ '64': int(256 * channel_multiplier * narrow),
28
+ '128': int(128 * channel_multiplier * narrow),
29
+ '256': int(64 * channel_multiplier * narrow),
30
+ '512': int(32 * channel_multiplier * narrow),
31
+ '1024': int(16 * channel_multiplier * narrow)
32
+ }
33
+
34
+ self.log_size = 8
35
+ first_out_size = 128
36
+ self.conv_body_first = nn.Conv2d(3, channels[f'{first_out_size}'], 1) # 256 -> 128
37
+
38
+ # downsample
39
+ in_channels = channels[f'{first_out_size}']
40
+ self.conv_body_down = nn.ModuleList()
41
+ for i in range(8, 2, -1):
42
+ out_channels = channels[f'{2**(i - 1)}']
43
+ self.conv_body_down.append(ResBlock(in_channels, out_channels, mode='down'))
44
+ in_channels = out_channels
45
+
46
+ self.num_style_feat = num_style_feat
47
+ linear_out_channel = num_style_feat
48
+ self.final_linear = nn.Linear(channels['4'] * 4 * 4, linear_out_channel)
49
+ self.final_conv = nn.Conv2d(in_channels, channels['4'], 3, 1, 1)
50
+
51
+ self.style_convs = nn.ModuleList()
52
+ self.to_rgbs = nn.ModuleList()
53
+ self.noises = nn.Module()
54
+
55
+ self.concat = concat
56
+ if concat:
57
+ in_channels = 3 + 32 # channels['64']
58
+ else:
59
+ in_channels = 3
60
+
61
+ for i in range(7, 9): # 128, 256
62
+ out_channels = channels[f'{2**i}'] #
63
+ self.style_convs.append(
64
+ StyleConv(
65
+ in_channels,
66
+ out_channels,
67
+ kernel_size=3,
68
+ num_style_feat=num_style_feat,
69
+ demodulate=True,
70
+ sample_mode='upsample'))
71
+ self.style_convs.append(
72
+ StyleConv(
73
+ out_channels,
74
+ out_channels,
75
+ kernel_size=3,
76
+ num_style_feat=num_style_feat,
77
+ demodulate=True,
78
+ sample_mode=None))
79
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
80
+ in_channels = out_channels
81
+
82
+ def forward(self, audio_sequences, face_sequences, gt_sequences):
83
+ B = audio_sequences.size(0)
84
+ input_dim_size = len(face_sequences.size())
85
+ inp, ref = torch.split(face_sequences,3,dim=1)
86
+
87
+ if input_dim_size > 4:
88
+ audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
89
+ inp = torch.cat([inp[:, :, i] for i in range(inp.size(2))], dim=0)
90
+ ref = torch.cat([ref[:, :, i] for i in range(ref.size(2))], dim=0)
91
+ gt_sequences = torch.cat([gt_sequences[:, :, i] for i in range(gt_sequences.size(2))], dim=0)
92
+
93
+ # get the global style
94
+ feat = F.leaky_relu_(self.conv_body_first(F.interpolate(ref, size=(256,256), mode='bilinear')), negative_slope=0.2)
95
+ for i in range(self.log_size - 2):
96
+ feat = self.conv_body_down[i](feat)
97
+ feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
98
+
99
+ # style code
100
+ style_code = self.final_linear(feat.reshape(feat.size(0), -1))
101
+ style_code = style_code.reshape(style_code.size(0), -1, self.num_style_feat)
102
+
103
+ LNet_input = torch.cat([inp, gt_sequences], dim=1)
104
+ LNet_input = F.interpolate(LNet_input, size=(96,96), mode='bilinear')
105
+
106
+ if self.concat:
107
+ low_res_img, low_res_feat = self.low_res(audio_sequences, LNet_input)
108
+ low_res_img.detach()
109
+ low_res_feat.detach()
110
+ out = torch.cat([low_res_img, low_res_feat], dim=1)
111
+
112
+ else:
113
+ low_res_img = self.low_res(audio_sequences, LNet_input)
114
+ low_res_img.detach()
115
+ # 96 x 96
116
+ out = low_res_img
117
+
118
+ p2d = (2,2,2,2)
119
+ out = F.pad(out, p2d, "reflect", 0)
120
+ skip = out
121
+
122
+ for conv1, conv2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], self.to_rgbs):
123
+ out = conv1(out, style_code) # 96, 192, 384
124
+ out = conv2(out, style_code)
125
+ skip = to_rgb(out, style_code, skip)
126
+ _outputs = skip
127
+
128
+ # remove padding
129
+ _outputs = _outputs[:,:,8:-8,8:-8]
130
+
131
+ if input_dim_size > 4:
132
+ _outputs = torch.split(_outputs, B, dim=0)
133
+ outputs = torch.stack(_outputs, dim=2)
134
+ low_res_img = F.interpolate(low_res_img, outputs.size()[3:])
135
+ low_res_img = torch.split(low_res_img, B, dim=0)
136
+ low_res_img = torch.stack(low_res_img, dim=2)
137
+ else:
138
+ outputs = _outputs
139
+ return outputs, low_res_img
models/LNet.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ from models.transformer import RETURNX, Transformer
6
+ from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
7
+ FFCADAINResBlocks, Jump, FinalBlock2d
8
+
9
+
10
+ class Visual_Encoder(nn.Module):
11
+ def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
12
+ super(Visual_Encoder, self).__init__()
13
+ self.layers = layers
14
+ self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
15
+ self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
16
+ for i in range(layers):
17
+ in_channels = min(ngf*(2**i), img_f)
18
+ out_channels = min(ngf*(2**(i+1)), img_f)
19
+ model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
20
+ model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
21
+ if i < 2:
22
+ ca_layer = RETURNX()
23
+ else:
24
+ ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
25
+ setattr(self, 'ca' + str(i), ca_layer)
26
+ setattr(self, 'ref_down' + str(i), model_ref)
27
+ setattr(self, 'inp_down' + str(i), model_inp)
28
+ self.output_nc = out_channels * 2
29
+
30
+ def forward(self, maskGT, ref):
31
+ x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
32
+ out=[x_maskGT]
33
+ for i in range(self.layers):
34
+ model_ref = getattr(self, 'ref_down'+str(i))
35
+ model_inp = getattr(self, 'inp_down'+str(i))
36
+ ca_layer = getattr(self, 'ca'+str(i))
37
+ x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
38
+ x_maskGT = ca_layer(x_maskGT, x_ref)
39
+ if i < self.layers - 1:
40
+ out.append(x_maskGT)
41
+ else:
42
+ out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features !
43
+ return out
44
+
45
+
46
+ class Decoder(nn.Module):
47
+ def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
48
+ super(Decoder, self).__init__()
49
+ self.layers = layers
50
+ for i in range(layers)[::-1]:
51
+ if i == layers-1:
52
+ in_channels = ngf*(2**(i+1)) * 2
53
+ else:
54
+ in_channels = min(ngf*(2**(i+1)), img_f)
55
+ out_channels = min(ngf*(2**i), img_f)
56
+ up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
57
+ res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
58
+ jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
59
+
60
+ setattr(self, 'up' + str(i), up)
61
+ setattr(self, 'res' + str(i), res)
62
+ setattr(self, 'jump' + str(i), jump)
63
+
64
+ self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
65
+ self.output_nc = out_channels
66
+
67
+ def forward(self, x, z):
68
+ out = x.pop()
69
+ for i in range(self.layers)[::-1]:
70
+ res_model = getattr(self, 'res' + str(i))
71
+ up_model = getattr(self, 'up' + str(i))
72
+ jump_model = getattr(self, 'jump' + str(i))
73
+ out = res_model(out, z)
74
+ out = up_model(out)
75
+ out = jump_model(x.pop()) + out
76
+ out_image = self.final(out)
77
+ return out_image
78
+
79
+
80
+ class LNet(nn.Module):
81
+ def __init__(
82
+ self,
83
+ image_nc=3,
84
+ descriptor_nc=512,
85
+ layer=3,
86
+ base_nc=64,
87
+ max_nc=512,
88
+ num_res_blocks=9,
89
+ use_spect=True,
90
+ encoder=Visual_Encoder,
91
+ decoder=Decoder
92
+ ):
93
+ super(LNet, self).__init__()
94
+
95
+ nonlinearity = nn.LeakyReLU(0.1)
96
+ norm_layer = functools.partial(LayerNorm2d, affine=True)
97
+ kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
98
+ self.descriptor_nc = descriptor_nc
99
+
100
+ self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
101
+ self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
102
+ self.audio_encoder = nn.Sequential(
103
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
104
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
105
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
106
+
107
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
108
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
109
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
110
+
111
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
112
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
113
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
114
+
115
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
116
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
117
+
118
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
119
+ Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
120
+ )
121
+
122
+ def forward(self, audio_sequences, face_sequences):
123
+ B = audio_sequences.size(0)
124
+ input_dim_size = len(face_sequences.size())
125
+ if input_dim_size > 4:
126
+ audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
127
+ face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
128
+ cropped, ref = torch.split(face_sequences, 3, dim=1)
129
+
130
+ vis_feat = self.encoder(cropped, ref)
131
+ audio_feat = self.audio_encoder(audio_sequences)
132
+ _outputs = self.decoder(vis_feat, audio_feat)
133
+
134
+ if input_dim_size > 4:
135
+ _outputs = torch.split(_outputs, B, dim=0)
136
+ outputs = torch.stack(_outputs, dim=2)
137
+ else:
138
+ outputs = _outputs
139
+ return outputs
models/__init__.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from models.DNet import DNet
3
+ from models.LNet import LNet
4
+ from models.ENet import ENet
5
+
6
+
7
+ def _load(checkpoint_path):
8
+ map_location=None if torch.cuda.is_available() else torch.device('cpu')
9
+ checkpoint = torch.load(checkpoint_path, map_location=map_location)
10
+ return checkpoint
11
+
12
+ def load_checkpoint(path, model):
13
+ print("Load checkpoint from: {}".format(path))
14
+ checkpoint = _load(path)
15
+ s = checkpoint["state_dict"] if 'arcface' not in path else checkpoint
16
+ new_s = {}
17
+ for k, v in s.items():
18
+ if 'low_res' in k:
19
+ continue
20
+ else:
21
+ new_s[k.replace('module.', '')] = v
22
+ model.load_state_dict(new_s, strict=False)
23
+ return model
24
+
25
+ def load_network(args):
26
+ L_net = LNet()
27
+ L_net = load_checkpoint(args.LNet_path, L_net)
28
+ E_net = ENet(lnet=L_net)
29
+ model = load_checkpoint(args.ENet_path, E_net)
30
+ return model.eval()
31
+
32
+ def load_DNet(args):
33
+ D_Net = DNet()
34
+ print("Load checkpoint from: {}".format(args.DNet_path))
35
+ checkpoint = torch.load(args.DNet_path, map_location=lambda storage, loc: storage)
36
+ D_Net.load_state_dict(checkpoint['net_G_ema'], strict=False)
37
+ return D_Net.eval()
models/__pycache__/DNet.cpython-38.pyc ADDED
Binary file (4.04 kB). View file
 
models/__pycache__/ENet.cpython-38.pyc ADDED
Binary file (3.78 kB). View file
 
models/__pycache__/LNet.cpython-38.pyc ADDED
Binary file (4.83 kB). View file
 
models/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (1.54 kB). View file
 
models/__pycache__/base_blocks.cpython-38.pyc ADDED
Binary file (20.2 kB). View file
 
models/__pycache__/ffc.cpython-38.pyc ADDED
Binary file (7.07 kB). View file
 
models/__pycache__/transformer.cpython-38.pyc ADDED
Binary file (4.81 kB). View file
 
models/base_blocks.py ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn.modules.batchnorm import BatchNorm2d
6
+ from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
7
+
8
+ from models.ffc import FFC
9
+ from basicsr.archs.arch_util import default_init_weights
10
+
11
+
12
+ class Conv2d(nn.Module):
13
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
14
+ super().__init__(*args, **kwargs)
15
+ self.conv_block = nn.Sequential(
16
+ nn.Conv2d(cin, cout, kernel_size, stride, padding),
17
+ nn.BatchNorm2d(cout)
18
+ )
19
+ self.act = nn.ReLU()
20
+ self.residual = residual
21
+
22
+ def forward(self, x):
23
+ out = self.conv_block(x)
24
+ if self.residual:
25
+ out += x
26
+ return self.act(out)
27
+
28
+
29
+ class ResBlock(nn.Module):
30
+ def __init__(self, in_channels, out_channels, mode='down'):
31
+ super(ResBlock, self).__init__()
32
+ self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
33
+ self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
34
+ self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
35
+ if mode == 'down':
36
+ self.scale_factor = 0.5
37
+ elif mode == 'up':
38
+ self.scale_factor = 2
39
+
40
+ def forward(self, x):
41
+ out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
42
+ # upsample/downsample
43
+ out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
44
+ out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
45
+ # skip
46
+ x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
47
+ skip = self.skip(x)
48
+ out = out + skip
49
+ return out
50
+
51
+
52
+ class LayerNorm2d(nn.Module):
53
+ def __init__(self, n_out, affine=True):
54
+ super(LayerNorm2d, self).__init__()
55
+ self.n_out = n_out
56
+ self.affine = affine
57
+
58
+ if self.affine:
59
+ self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
60
+ self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
61
+
62
+ def forward(self, x):
63
+ normalized_shape = x.size()[1:]
64
+ if self.affine:
65
+ return F.layer_norm(x, normalized_shape, \
66
+ self.weight.expand(normalized_shape),
67
+ self.bias.expand(normalized_shape))
68
+ else:
69
+ return F.layer_norm(x, normalized_shape)
70
+
71
+
72
+ def spectral_norm(module, use_spect=True):
73
+ if use_spect:
74
+ return SpectralNorm(module)
75
+ else:
76
+ return module
77
+
78
+
79
+ class FirstBlock2d(nn.Module):
80
+ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
81
+ super(FirstBlock2d, self).__init__()
82
+ kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
83
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
84
+
85
+ if type(norm_layer) == type(None):
86
+ self.model = nn.Sequential(conv, nonlinearity)
87
+ else:
88
+ self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
89
+
90
+ def forward(self, x):
91
+ out = self.model(x)
92
+ return out
93
+
94
+
95
+ class DownBlock2d(nn.Module):
96
+ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
97
+ super(DownBlock2d, self).__init__()
98
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
99
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
100
+ pool = nn.AvgPool2d(kernel_size=(2, 2))
101
+
102
+ if type(norm_layer) == type(None):
103
+ self.model = nn.Sequential(conv, nonlinearity, pool)
104
+ else:
105
+ self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
106
+
107
+ def forward(self, x):
108
+ out = self.model(x)
109
+ return out
110
+
111
+
112
+ class UpBlock2d(nn.Module):
113
+ def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
114
+ super(UpBlock2d, self).__init__()
115
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
116
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
117
+ if type(norm_layer) == type(None):
118
+ self.model = nn.Sequential(conv, nonlinearity)
119
+ else:
120
+ self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
121
+
122
+ def forward(self, x):
123
+ out = self.model(F.interpolate(x, scale_factor=2))
124
+ return out
125
+
126
+
127
+ class ADAIN(nn.Module):
128
+ def __init__(self, norm_nc, feature_nc):
129
+ super().__init__()
130
+
131
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
132
+
133
+ nhidden = 128
134
+ use_bias=True
135
+
136
+ self.mlp_shared = nn.Sequential(
137
+ nn.Linear(feature_nc, nhidden, bias=use_bias),
138
+ nn.ReLU()
139
+ )
140
+ self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
141
+ self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
142
+
143
+ def forward(self, x, feature):
144
+
145
+ # Part 1. generate parameter-free normalized activations
146
+ normalized = self.param_free_norm(x)
147
+ # Part 2. produce scaling and bias conditioned on feature
148
+ feature = feature.view(feature.size(0), -1)
149
+ actv = self.mlp_shared(feature)
150
+ gamma = self.mlp_gamma(actv)
151
+ beta = self.mlp_beta(actv)
152
+
153
+ # apply scale and bias
154
+ gamma = gamma.view(*gamma.size()[:2], 1,1)
155
+ beta = beta.view(*beta.size()[:2], 1,1)
156
+ out = normalized * (1 + gamma) + beta
157
+ return out
158
+
159
+
160
+ class FineADAINResBlock2d(nn.Module):
161
+ """
162
+ Define an Residual block for different types
163
+ """
164
+ def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
165
+ super(FineADAINResBlock2d, self).__init__()
166
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
167
+ self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
168
+ self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
169
+ self.norm1 = ADAIN(input_nc, feature_nc)
170
+ self.norm2 = ADAIN(input_nc, feature_nc)
171
+ self.actvn = nonlinearity
172
+
173
+ def forward(self, x, z):
174
+ dx = self.actvn(self.norm1(self.conv1(x), z))
175
+ dx = self.norm2(self.conv2(x), z)
176
+ out = dx + x
177
+ return out
178
+
179
+
180
+ class FineADAINResBlocks(nn.Module):
181
+ def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
182
+ super(FineADAINResBlocks, self).__init__()
183
+ self.num_block = num_block
184
+ for i in range(num_block):
185
+ model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
186
+ setattr(self, 'res'+str(i), model)
187
+
188
+ def forward(self, x, z):
189
+ for i in range(self.num_block):
190
+ model = getattr(self, 'res'+str(i))
191
+ x = model(x, z)
192
+ return x
193
+
194
+
195
+ class ADAINEncoderBlock(nn.Module):
196
+ def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
197
+ super(ADAINEncoderBlock, self).__init__()
198
+ kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
199
+ kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
200
+
201
+ self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
202
+ self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
203
+
204
+
205
+ self.norm_0 = ADAIN(input_nc, feature_nc)
206
+ self.norm_1 = ADAIN(output_nc, feature_nc)
207
+ self.actvn = nonlinearity
208
+
209
+ def forward(self, x, z):
210
+ x = self.conv_0(self.actvn(self.norm_0(x, z)))
211
+ x = self.conv_1(self.actvn(self.norm_1(x, z)))
212
+ return x
213
+
214
+
215
+ class ADAINDecoderBlock(nn.Module):
216
+ def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
217
+ super(ADAINDecoderBlock, self).__init__()
218
+ # Attributes
219
+ self.actvn = nonlinearity
220
+ hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
221
+
222
+ kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
223
+ if use_transpose:
224
+ kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
225
+ else:
226
+ kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
227
+
228
+ # create conv layers
229
+ self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
230
+ if use_transpose:
231
+ self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
232
+ self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
233
+ else:
234
+ self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
235
+ nn.Upsample(scale_factor=2))
236
+ self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
237
+ nn.Upsample(scale_factor=2))
238
+ # define normalization layers
239
+ self.norm_0 = ADAIN(input_nc, feature_nc)
240
+ self.norm_1 = ADAIN(hidden_nc, feature_nc)
241
+ self.norm_s = ADAIN(input_nc, feature_nc)
242
+
243
+ def forward(self, x, z):
244
+ x_s = self.shortcut(x, z)
245
+ dx = self.conv_0(self.actvn(self.norm_0(x, z)))
246
+ dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
247
+ out = x_s + dx
248
+ return out
249
+
250
+ def shortcut(self, x, z):
251
+ x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
252
+ return x_s
253
+
254
+
255
+ class FineEncoder(nn.Module):
256
+ """docstring for Encoder"""
257
+ def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
258
+ super(FineEncoder, self).__init__()
259
+ self.layers = layers
260
+ self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
261
+ for i in range(layers):
262
+ in_channels = min(ngf*(2**i), img_f)
263
+ out_channels = min(ngf*(2**(i+1)), img_f)
264
+ model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
265
+ setattr(self, 'down' + str(i), model)
266
+ self.output_nc = out_channels
267
+
268
+ def forward(self, x):
269
+ x = self.first(x)
270
+ out=[x]
271
+ for i in range(self.layers):
272
+ model = getattr(self, 'down'+str(i))
273
+ x = model(x)
274
+ out.append(x)
275
+ return out
276
+
277
+
278
+ class FineDecoder(nn.Module):
279
+ """docstring for FineDecoder"""
280
+ def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
281
+ super(FineDecoder, self).__init__()
282
+ self.layers = layers
283
+ for i in range(layers)[::-1]:
284
+ in_channels = min(ngf*(2**(i+1)), img_f)
285
+ out_channels = min(ngf*(2**i), img_f)
286
+ up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
287
+ res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
288
+ jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
289
+ setattr(self, 'up' + str(i), up)
290
+ setattr(self, 'res' + str(i), res)
291
+ setattr(self, 'jump' + str(i), jump)
292
+ self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
293
+ self.output_nc = out_channels
294
+
295
+ def forward(self, x, z):
296
+ out = x.pop()
297
+ for i in range(self.layers)[::-1]:
298
+ res_model = getattr(self, 'res' + str(i))
299
+ up_model = getattr(self, 'up' + str(i))
300
+ jump_model = getattr(self, 'jump' + str(i))
301
+ out = res_model(out, z)
302
+ out = up_model(out)
303
+ out = jump_model(x.pop()) + out
304
+ out_image = self.final(out)
305
+ return out_image
306
+
307
+
308
+ class ADAINEncoder(nn.Module):
309
+ def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
310
+ super(ADAINEncoder, self).__init__()
311
+ self.layers = layers
312
+ self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
313
+ for i in range(layers):
314
+ in_channels = min(ngf * (2**i), img_f)
315
+ out_channels = min(ngf *(2**(i+1)), img_f)
316
+ model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
317
+ setattr(self, 'encoder' + str(i), model)
318
+ self.output_nc = out_channels
319
+
320
+ def forward(self, x, z):
321
+ out = self.input_layer(x)
322
+ out_list = [out]
323
+ for i in range(self.layers):
324
+ model = getattr(self, 'encoder' + str(i))
325
+ out = model(out, z)
326
+ out_list.append(out)
327
+ return out_list
328
+
329
+
330
+ class ADAINDecoder(nn.Module):
331
+ """docstring for ADAINDecoder"""
332
+ def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
333
+ nonlinearity=nn.LeakyReLU(), use_spect=False):
334
+
335
+ super(ADAINDecoder, self).__init__()
336
+ self.encoder_layers = encoder_layers
337
+ self.decoder_layers = decoder_layers
338
+ self.skip_connect = skip_connect
339
+ use_transpose = True
340
+ for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
341
+ in_channels = min(ngf * (2**(i+1)), img_f)
342
+ in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
343
+ out_channels = min(ngf * (2**i), img_f)
344
+ model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
345
+ setattr(self, 'decoder' + str(i), model)
346
+ self.output_nc = out_channels*2 if self.skip_connect else out_channels
347
+
348
+ def forward(self, x, z):
349
+ out = x.pop() if self.skip_connect else x
350
+ for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
351
+ model = getattr(self, 'decoder' + str(i))
352
+ out = model(out, z)
353
+ out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
354
+ return out
355
+
356
+
357
+ class ADAINHourglass(nn.Module):
358
+ def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
359
+ super(ADAINHourglass, self).__init__()
360
+ self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
361
+ self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
362
+ self.output_nc = self.decoder.output_nc
363
+
364
+ def forward(self, x, z):
365
+ return self.decoder(self.encoder(x, z), z)
366
+
367
+
368
+ class FineADAINLama(nn.Module):
369
+ def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
370
+ super(FineADAINLama, self).__init__()
371
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
372
+ self.actvn = nonlinearity
373
+ ratio_gin = 0.75
374
+ ratio_gout = 0.75
375
+ self.ffc = FFC(input_nc, input_nc, 3,
376
+ ratio_gin, ratio_gout, 1, 1, 1,
377
+ 1, False, False, padding_type='reflect')
378
+ global_channels = int(input_nc * ratio_gout)
379
+ self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
380
+ self.bn_g = ADAIN(global_channels, feature_nc)
381
+
382
+ def forward(self, x, z):
383
+ x_l, x_g = self.ffc(x)
384
+ x_l = self.actvn(self.bn_l(x_l,z))
385
+ x_g = self.actvn(self.bn_g(x_g,z))
386
+ return x_l, x_g
387
+
388
+
389
+ class FFCResnetBlock(nn.Module):
390
+ def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
391
+ spatial_transform_kwargs=None, inline=False, **conv_kwargs):
392
+ super().__init__()
393
+ self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
394
+ self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
395
+ self.inline = True
396
+
397
+ def forward(self, x, z):
398
+ if self.inline:
399
+ x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
400
+ else:
401
+ x_l, x_g = x if type(x) is tuple else (x, 0)
402
+
403
+ id_l, id_g = x_l, x_g
404
+ x_l, x_g = self.conv1((x_l, x_g), z)
405
+ x_l, x_g = self.conv2((x_l, x_g), z)
406
+
407
+ x_l, x_g = id_l + x_l, id_g + x_g
408
+ out = x_l, x_g
409
+ if self.inline:
410
+ out = torch.cat(out, dim=1)
411
+ return out
412
+
413
+
414
+ class FFCADAINResBlocks(nn.Module):
415
+ def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
416
+ super(FFCADAINResBlocks, self).__init__()
417
+ self.num_block = num_block
418
+ for i in range(num_block):
419
+ model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
420
+ setattr(self, 'res'+str(i), model)
421
+
422
+ def forward(self, x, z):
423
+ for i in range(self.num_block):
424
+ model = getattr(self, 'res'+str(i))
425
+ x = model(x, z)
426
+ return x
427
+
428
+
429
+ class Jump(nn.Module):
430
+ def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
431
+ super(Jump, self).__init__()
432
+ kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
433
+ conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
434
+ if type(norm_layer) == type(None):
435
+ self.model = nn.Sequential(conv, nonlinearity)
436
+ else:
437
+ self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
438
+
439
+ def forward(self, x):
440
+ out = self.model(x)
441
+ return out
442
+
443
+
444
+ class FinalBlock2d(nn.Module):
445
+ def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
446
+ super(FinalBlock2d, self).__init__()
447
+ kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
448
+ conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
449
+ if tanh_or_sigmoid == 'sigmoid':
450
+ out_nonlinearity = nn.Sigmoid()
451
+ else:
452
+ out_nonlinearity = nn.Tanh()
453
+ self.model = nn.Sequential(conv, out_nonlinearity)
454
+
455
+ def forward(self, x):
456
+ out = self.model(x)
457
+ return out
458
+
459
+
460
+ class ModulatedConv2d(nn.Module):
461
+ def __init__(self,
462
+ in_channels,
463
+ out_channels,
464
+ kernel_size,
465
+ num_style_feat,
466
+ demodulate=True,
467
+ sample_mode=None,
468
+ eps=1e-8):
469
+ super(ModulatedConv2d, self).__init__()
470
+ self.in_channels = in_channels
471
+ self.out_channels = out_channels
472
+ self.kernel_size = kernel_size
473
+ self.demodulate = demodulate
474
+ self.sample_mode = sample_mode
475
+ self.eps = eps
476
+
477
+ # modulation inside each modulated conv
478
+ self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
479
+ # initialization
480
+ default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
481
+
482
+ self.weight = nn.Parameter(
483
+ torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
484
+ math.sqrt(in_channels * kernel_size**2))
485
+ self.padding = kernel_size // 2
486
+
487
+ def forward(self, x, style):
488
+ b, c, h, w = x.shape
489
+ style = self.modulation(style).view(b, 1, c, 1, 1)
490
+ weight = self.weight * style
491
+
492
+ if self.demodulate:
493
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
494
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
495
+
496
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
497
+
498
+ # upsample or downsample if necessary
499
+ if self.sample_mode == 'upsample':
500
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
501
+ elif self.sample_mode == 'downsample':
502
+ x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
503
+
504
+ b, c, h, w = x.shape
505
+ x = x.view(1, b * c, h, w)
506
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
507
+ out = out.view(b, self.out_channels, *out.shape[2:4])
508
+ return out
509
+
510
+ def __repr__(self):
511
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
512
+ f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
513
+
514
+
515
+ class StyleConv(nn.Module):
516
+ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
517
+ super(StyleConv, self).__init__()
518
+ self.modulated_conv = ModulatedConv2d(
519
+ in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
520
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
521
+ self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
522
+ self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
523
+
524
+ def forward(self, x, style, noise=None):
525
+ # modulate
526
+ out = self.modulated_conv(x, style) * 2**0.5 # for conversion
527
+ # noise injection
528
+ if noise is None:
529
+ b, _, h, w = out.shape
530
+ noise = out.new_empty(b, 1, h, w).normal_()
531
+ out = out + self.weight * noise
532
+ # add bias
533
+ out = out + self.bias
534
+ # activation
535
+ out = self.activate(out)
536
+ return out
537
+
538
+
539
+ class ToRGB(nn.Module):
540
+ def __init__(self, in_channels, num_style_feat, upsample=True):
541
+ super(ToRGB, self).__init__()
542
+ self.upsample = upsample
543
+ self.modulated_conv = ModulatedConv2d(
544
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
545
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
546
+
547
+ def forward(self, x, style, skip=None):
548
+ out = self.modulated_conv(x, style)
549
+ out = out + self.bias
550
+ if skip is not None:
551
+ if self.upsample:
552
+ skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
553
+ out = out + skip
554
+ return out
models/ffc.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fast Fourier Convolution NeurIPS 2020
2
+ # original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
3
+ # paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ # from models.modules.squeeze_excitation import SELayer
9
+ import torch.fft
10
+
11
+ class SELayer(nn.Module):
12
+ def __init__(self, channel, reduction=16):
13
+ super(SELayer, self).__init__()
14
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
15
+ self.fc = nn.Sequential(
16
+ nn.Linear(channel, channel // reduction, bias=False),
17
+ nn.ReLU(inplace=True),
18
+ nn.Linear(channel // reduction, channel, bias=False),
19
+ nn.Sigmoid()
20
+ )
21
+
22
+ def forward(self, x):
23
+ b, c, _, _ = x.size()
24
+ y = self.avg_pool(x).view(b, c)
25
+ y = self.fc(y).view(b, c, 1, 1)
26
+ res = x * y.expand_as(x)
27
+ return res
28
+
29
+
30
+ class FFCSE_block(nn.Module):
31
+ def __init__(self, channels, ratio_g):
32
+ super(FFCSE_block, self).__init__()
33
+ in_cg = int(channels * ratio_g)
34
+ in_cl = channels - in_cg
35
+ r = 16
36
+
37
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
38
+ self.conv1 = nn.Conv2d(channels, channels // r,
39
+ kernel_size=1, bias=True)
40
+ self.relu1 = nn.ReLU(inplace=True)
41
+ self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
42
+ channels // r, in_cl, kernel_size=1, bias=True)
43
+ self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
44
+ channels // r, in_cg, kernel_size=1, bias=True)
45
+ self.sigmoid = nn.Sigmoid()
46
+
47
+ def forward(self, x):
48
+ x = x if type(x) is tuple else (x, 0)
49
+ id_l, id_g = x
50
+
51
+ x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
52
+ x = self.avgpool(x)
53
+ x = self.relu1(self.conv1(x))
54
+
55
+ x_l = 0 if self.conv_a2l is None else id_l * \
56
+ self.sigmoid(self.conv_a2l(x))
57
+ x_g = 0 if self.conv_a2g is None else id_g * \
58
+ self.sigmoid(self.conv_a2g(x))
59
+ return x_l, x_g
60
+
61
+
62
+ class FourierUnit(nn.Module):
63
+
64
+ def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
65
+ spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
66
+ # bn_layer not used
67
+ super(FourierUnit, self).__init__()
68
+ self.groups = groups
69
+
70
+ self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
71
+ out_channels=out_channels * 2,
72
+ kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
73
+ self.bn = torch.nn.BatchNorm2d(out_channels * 2)
74
+ self.relu = torch.nn.ReLU(inplace=True)
75
+
76
+ # squeeze and excitation block
77
+ self.use_se = use_se
78
+ if use_se:
79
+ if se_kwargs is None:
80
+ se_kwargs = {}
81
+ self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
82
+
83
+ self.spatial_scale_factor = spatial_scale_factor
84
+ self.spatial_scale_mode = spatial_scale_mode
85
+ self.spectral_pos_encoding = spectral_pos_encoding
86
+ self.ffc3d = ffc3d
87
+ self.fft_norm = fft_norm
88
+
89
+ def forward(self, x):
90
+ batch = x.shape[0]
91
+
92
+ if self.spatial_scale_factor is not None:
93
+ orig_size = x.shape[-2:]
94
+ x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
95
+
96
+ r_size = x.size()
97
+ # (batch, c, h, w/2+1, 2)
98
+ fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
99
+ ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
100
+ ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
101
+ ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
102
+ ffted = ffted.view((batch, -1,) + ffted.size()[3:])
103
+
104
+ if self.spectral_pos_encoding:
105
+ height, width = ffted.shape[-2:]
106
+ coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
107
+ coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
108
+ ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
109
+
110
+ if self.use_se:
111
+ ffted = self.se(ffted)
112
+
113
+ ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
114
+ ffted = self.relu(self.bn(ffted))
115
+
116
+ ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
117
+ 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
118
+ ffted = torch.complex(ffted[..., 0], ffted[..., 1])
119
+
120
+ ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
121
+ output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
122
+
123
+ if self.spatial_scale_factor is not None:
124
+ output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
125
+
126
+ return output
127
+
128
+
129
+ class SpectralTransform(nn.Module):
130
+ def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
131
+ # bn_layer not used
132
+ super(SpectralTransform, self).__init__()
133
+ self.enable_lfu = enable_lfu
134
+ if stride == 2:
135
+ self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
136
+ else:
137
+ self.downsample = nn.Identity()
138
+
139
+ self.stride = stride
140
+ self.conv1 = nn.Sequential(
141
+ nn.Conv2d(in_channels, out_channels //
142
+ 2, kernel_size=1, groups=groups, bias=False),
143
+ nn.BatchNorm2d(out_channels // 2),
144
+ nn.ReLU(inplace=True)
145
+ )
146
+ self.fu = FourierUnit(
147
+ out_channels // 2, out_channels // 2, groups, **fu_kwargs)
148
+ if self.enable_lfu:
149
+ self.lfu = FourierUnit(
150
+ out_channels // 2, out_channels // 2, groups)
151
+ self.conv2 = torch.nn.Conv2d(
152
+ out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
153
+
154
+ def forward(self, x):
155
+ x = self.downsample(x)
156
+ x = self.conv1(x)
157
+ output = self.fu(x)
158
+
159
+ if self.enable_lfu:
160
+ n, c, h, w = x.shape
161
+ split_no = 2
162
+ split_s = h // split_no
163
+ xs = torch.cat(torch.split(
164
+ x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
165
+ xs = torch.cat(torch.split(xs, split_s, dim=-1),
166
+ dim=1).contiguous()
167
+ xs = self.lfu(xs)
168
+ xs = xs.repeat(1, 1, split_no, split_no).contiguous()
169
+ else:
170
+ xs = 0
171
+
172
+ output = self.conv2(x + output + xs)
173
+ return output
174
+
175
+
176
+ class FFC(nn.Module):
177
+
178
+ def __init__(self, in_channels, out_channels, kernel_size,
179
+ ratio_gin, ratio_gout, stride=1, padding=0,
180
+ dilation=1, groups=1, bias=False, enable_lfu=True,
181
+ padding_type='reflect', gated=False, **spectral_kwargs):
182
+ super(FFC, self).__init__()
183
+
184
+ assert stride == 1 or stride == 2, "Stride should be 1 or 2."
185
+ self.stride = stride
186
+
187
+ in_cg = int(in_channels * ratio_gin)
188
+ in_cl = in_channels - in_cg
189
+ out_cg = int(out_channels * ratio_gout)
190
+ out_cl = out_channels - out_cg
191
+
192
+ self.ratio_gin = ratio_gin
193
+ self.ratio_gout = ratio_gout
194
+ self.global_in_num = in_cg
195
+
196
+ module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
197
+ self.convl2l = module(in_cl, out_cl, kernel_size,
198
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
199
+ module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
200
+ self.convl2g = module(in_cl, out_cg, kernel_size,
201
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
202
+ module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
203
+ self.convg2l = module(in_cg, out_cl, kernel_size,
204
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
205
+ module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
206
+ self.convg2g = module(
207
+ in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
208
+
209
+ self.gated = gated
210
+ module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
211
+ self.gate = module(in_channels, 2, 1)
212
+
213
+ def forward(self, x):
214
+ x_l, x_g = x if type(x) is tuple else (x, 0)
215
+ out_xl, out_xg = 0, 0
216
+
217
+ if self.gated:
218
+ total_input_parts = [x_l]
219
+ if torch.is_tensor(x_g):
220
+ total_input_parts.append(x_g)
221
+ total_input = torch.cat(total_input_parts, dim=1)
222
+
223
+ gates = torch.sigmoid(self.gate(total_input))
224
+ g2l_gate, l2g_gate = gates.chunk(2, dim=1)
225
+ else:
226
+ g2l_gate, l2g_gate = 1, 1
227
+
228
+ if self.ratio_gout != 1:
229
+ out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
230
+ if self.ratio_gout != 0:
231
+ out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
232
+
233
+ return out_xl, out_xg
models/transformer.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ from einops import rearrange
5
+
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import numpy as np
9
+
10
+
11
+ class GELU(nn.Module):
12
+ def __init__(self):
13
+ super(GELU, self).__init__()
14
+ def forward(self, x):
15
+ return 0.5*x*(1+F.tanh(np.sqrt(2/np.pi)*(x+0.044715*torch.pow(x,3))))
16
+
17
+ # helpers
18
+
19
+ def pair(t):
20
+ return t if isinstance(t, tuple) else (t, t)
21
+
22
+ # classes
23
+
24
+ class PreNorm(nn.Module):
25
+ def __init__(self, dim, fn):
26
+ super().__init__()
27
+ self.norm = nn.LayerNorm(dim)
28
+ self.fn = fn
29
+ def forward(self, x, **kwargs):
30
+ return self.fn(self.norm(x), **kwargs)
31
+
32
+ class DualPreNorm(nn.Module):
33
+ def __init__(self, dim, fn):
34
+ super().__init__()
35
+ self.normx = nn.LayerNorm(dim)
36
+ self.normy = nn.LayerNorm(dim)
37
+ self.fn = fn
38
+ def forward(self, x, y, **kwargs):
39
+ return self.fn(self.normx(x), self.normy(y), **kwargs)
40
+
41
+ class FeedForward(nn.Module):
42
+ def __init__(self, dim, hidden_dim, dropout = 0.):
43
+ super().__init__()
44
+ self.net = nn.Sequential(
45
+ nn.Linear(dim, hidden_dim),
46
+ GELU(),
47
+ nn.Dropout(dropout),
48
+ nn.Linear(hidden_dim, dim),
49
+ nn.Dropout(dropout)
50
+ )
51
+ def forward(self, x):
52
+ return self.net(x)
53
+
54
+ class Attention(nn.Module):
55
+ def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
56
+ super().__init__()
57
+ inner_dim = dim_head * heads
58
+ project_out = not (heads == 1 and dim_head == dim)
59
+
60
+ self.heads = heads
61
+ self.scale = dim_head ** -0.5
62
+
63
+ self.attend = nn.Softmax(dim = -1)
64
+
65
+ self.to_q = nn.Linear(dim, inner_dim, bias = False)
66
+ self.to_k = nn.Linear(dim, inner_dim, bias = False)
67
+ self.to_v = nn.Linear(dim, inner_dim, bias = False)
68
+
69
+
70
+ self.to_out = nn.Sequential(
71
+ nn.Linear(inner_dim, dim),
72
+ nn.Dropout(dropout)
73
+ ) if project_out else nn.Identity()
74
+
75
+ def forward(self, x, y):
76
+ # qk = self.to_qk(x).chunk(2, dim = -1) #
77
+ q = rearrange(self.to_q(x), 'b n (h d) -> b h n d', h = self.heads) # q,k from the zero feature
78
+ k = rearrange(self.to_k(x), 'b n (h d) -> b h n d', h = self.heads) # v from the reference features
79
+ v = rearrange(self.to_v(y), 'b n (h d) -> b h n d', h = self.heads)
80
+
81
+ dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
82
+
83
+ attn = self.attend(dots)
84
+
85
+ out = torch.matmul(attn, v)
86
+ out = rearrange(out, 'b h n d -> b n (h d)')
87
+ return self.to_out(out)
88
+
89
+ class Transformer(nn.Module):
90
+ def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
91
+ super().__init__()
92
+ self.layers = nn.ModuleList([])
93
+ for _ in range(depth):
94
+ self.layers.append(nn.ModuleList([
95
+ DualPreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
96
+ PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
97
+ ]))
98
+
99
+
100
+ def forward(self, x, y): # x is the cropped, y is the foreign reference
101
+ bs,c,h,w = x.size()
102
+
103
+ # img to embedding
104
+ x = x.view(bs,c,-1).permute(0,2,1)
105
+ y = y.view(bs,c,-1).permute(0,2,1)
106
+
107
+ for attn, ff in self.layers:
108
+ x = attn(x, y) + x
109
+ x = ff(x) + x
110
+
111
+ x = x.view(bs,h,w,c).permute(0,3,1,2)
112
+ return x
113
+
114
+ class RETURNX(nn.Module):
115
+ def __init__(self,):
116
+ super().__init__()
117
+
118
+ def forward(self, x, y): # x is the cropped, y is the foreign reference
119
+ return x
results/1.mp4 ADDED
Binary file (416 kB). View file
 
temp/1.mp4_coeffs.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f99747e3debfae74d7169f06fa016e98385e081aa9301071db342dec38818588
3
+ size 359592
temp/1.mp4_landmarks.txt ADDED
The diff for this file is too large to render. See raw diff
 
temp/1.mp4_stablized.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b8bc8e44ea961ce4c84ec162a45a6f337dbc95fe6dcf6711d66a1b4421fa70
3
+ size 67436672
temp/1.mp4x12_landmarks.txt ADDED
The diff for this file is too large to render. See raw diff
 
temp/dropbox5.mp4_coeffs.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae925c8a5488ee06eeef23e40dc3b17e91090d00373d0e5e670233fb015e5331
3
+ size 351208
temp/dropbox5.mp4_landmarks.txt ADDED
The diff for this file is too large to render. See raw diff
 
temp/dropbox5.mp4_stablized.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1e5b20415ce5616868467f44b0e557296b86e0b07ac76fbfae4355672c61dd1
3
+ size 65863808
temp/dropbox5.mp4x12_landmarks.txt ADDED
The diff for this file is too large to render. See raw diff
 
temp/temp/result.mp4 ADDED
Binary file (44 Bytes). View file
 
temp/temp/temp.wav ADDED
Binary file (693 kB). View file
 
third_part/GFPGAN/LICENSE ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tencent is pleased to support the open source community by making GFPGAN available.
2
+
3
+ Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
4
+
5
+ GFPGAN is licensed under the Apache License Version 2.0 except for the third-party components listed below.
6
+
7
+
8
+ Terms of the Apache License Version 2.0:
9
+ ---------------------------------------------
10
+ Apache License
11
+
12
+ Version 2.0, January 2004
13
+
14
+ http://www.apache.org/licenses/
15
+
16
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
17
+ 1. Definitions.
18
+
19
+ “License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
20
+
21
+ “Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
22
+
23
+ “Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ “You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.
26
+
27
+ “Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
28
+
29
+ “Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
30
+
31
+ “Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
32
+
33
+ “Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
34
+
35
+ “Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
36
+
37
+ “Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
38
+
39
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
40
+
41
+ 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
42
+
43
+ 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
44
+
45
+ You must give any other recipients of the Work or Derivative Works a copy of this License; and
46
+
47
+ You must cause any modified files to carry prominent notices stating that You changed the files; and
48
+
49
+ You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
50
+
51
+ If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
52
+
53
+ You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
54
+
55
+ 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
56
+
57
+ 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
58
+
59
+ 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
60
+
61
+ 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
62
+
63
+ 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
64
+
65
+ END OF TERMS AND CONDITIONS
66
+
67
+
68
+
69
+ Other dependencies and licenses:
70
+
71
+
72
+ Open Source Software licensed under the Apache 2.0 license and Other Licenses of the Third-Party Components therein:
73
+ ---------------------------------------------
74
+ 1. basicsr
75
+ Copyright 2018-2020 BasicSR Authors
76
+
77
+
78
+ This BasicSR project is released under the Apache 2.0 license.
79
+
80
+ A copy of Apache 2.0 is included in this file.
81
+
82
+ StyleGAN2
83
+ The codes are modified from the repository stylegan2-pytorch. Many thanks to the author - Kim Seonghyeon 😊 for translating from the official TensorFlow codes to PyTorch ones. Here is the license of stylegan2-pytorch.
84
+ The official repository is https://github.com/NVlabs/stylegan2, and here is the NVIDIA license.
85
+ DFDNet
86
+ The codes are largely modified from the repository DFDNet. Their license is Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
87
+
88
+ Terms of the Nvidia License:
89
+ ---------------------------------------------
90
+
91
+ 1. Definitions
92
+
93
+ "Licensor" means any person or entity that distributes its Work.
94
+
95
+ "Software" means the original work of authorship made available under
96
+ this License.
97
+
98
+ "Work" means the Software and any additions to or derivative works of
99
+ the Software that are made available under this License.
100
+
101
+ "Nvidia Processors" means any central processing unit (CPU), graphics
102
+ processing unit (GPU), field-programmable gate array (FPGA),
103
+ application-specific integrated circuit (ASIC) or any combination
104
+ thereof designed, made, sold, or provided by Nvidia or its affiliates.
105
+
106
+ The terms "reproduce," "reproduction," "derivative works," and
107
+ "distribution" have the meaning as provided under U.S. copyright law;
108
+ provided, however, that for the purposes of this License, derivative
109
+ works shall not include works that remain separable from, or merely
110
+ link (or bind by name) to the interfaces of, the Work.
111
+
112
+ Works, including the Software, are "made available" under this License
113
+ by including in or with the Work either (a) a copyright notice
114
+ referencing the applicability of this License to the Work, or (b) a
115
+ copy of this License.
116
+
117
+ 2. License Grants
118
+
119
+ 2.1 Copyright Grant. Subject to the terms and conditions of this
120
+ License, each Licensor grants to you a perpetual, worldwide,
121
+ non-exclusive, royalty-free, copyright license to reproduce,
122
+ prepare derivative works of, publicly display, publicly perform,
123
+ sublicense and distribute its Work and any resulting derivative
124
+ works in any form.
125
+
126
+ 3. Limitations
127
+
128
+ 3.1 Redistribution. You may reproduce or distribute the Work only
129
+ if (a) you do so under this License, (b) you include a complete
130
+ copy of this License with your distribution, and (c) you retain
131
+ without modification any copyright, patent, trademark, or
132
+ attribution notices that are present in the Work.
133
+
134
+ 3.2 Derivative Works. You may specify that additional or different
135
+ terms apply to the use, reproduction, and distribution of your
136
+ derivative works of the Work ("Your Terms") only if (a) Your Terms
137
+ provide that the use limitation in Section 3.3 applies to your
138
+ derivative works, and (b) you identify the specific derivative
139
+ works that are subject to Your Terms. Notwithstanding Your Terms,
140
+ this License (including the redistribution requirements in Section
141
+ 3.1) will continue to apply to the Work itself.
142
+
143
+ 3.3 Use Limitation. The Work and any derivative works thereof only
144
+ may be used or intended for use non-commercially. The Work or
145
+ derivative works thereof may be used or intended for use by Nvidia
146
+ or its affiliates commercially or non-commercially. As used herein,
147
+ "non-commercially" means for research or evaluation purposes only.
148
+
149
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim
150
+ against any Licensor (including any claim, cross-claim or
151
+ counterclaim in a lawsuit) to enforce any patents that you allege
152
+ are infringed by any Work, then your rights under this License from
153
+ such Licensor (including the grants in Sections 2.1 and 2.2) will
154
+ terminate immediately.
155
+
156
+ 3.5 Trademarks. This License does not grant any rights to use any
157
+ Licensor's or its affiliates' names, logos, or trademarks, except
158
+ as necessary to reproduce the notices described in this License.
159
+
160
+ 3.6 Termination. If you violate any term of this License, then your
161
+ rights under this License (including the grants in Sections 2.1 and
162
+ 2.2) will terminate immediately.
163
+
164
+ 4. Disclaimer of Warranty.
165
+
166
+ THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
167
+ KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
168
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
169
+ NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
170
+ THIS LICENSE.
171
+
172
+ 5. Limitation of Liability.
173
+
174
+ EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
175
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
176
+ SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
177
+ INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
178
+ OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
179
+ (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
180
+ LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
181
+ COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
182
+ THE POSSIBILITY OF SUCH DAMAGES.
183
+
184
+ MIT License
185
+
186
+ Copyright (c) 2019 Kim Seonghyeon
187
+
188
+ Permission is hereby granted, free of charge, to any person obtaining a copy
189
+ of this software and associated documentation files (the "Software"), to deal
190
+ in the Software without restriction, including without limitation the rights
191
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
192
+ copies of the Software, and to permit persons to whom the Software is
193
+ furnished to do so, subject to the following conditions:
194
+
195
+ The above copyright notice and this permission notice shall be included in all
196
+ copies or substantial portions of the Software.
197
+
198
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
199
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
200
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
201
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
202
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
203
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
204
+ SOFTWARE.
205
+
206
+
207
+
208
+ Open Source Software licensed under the BSD 3-Clause license:
209
+ ---------------------------------------------
210
+ 1. torchvision
211
+ Copyright (c) Soumith Chintala 2016,
212
+ All rights reserved.
213
+
214
+ 2. torch
215
+ Copyright (c) 2016- Facebook, Inc (Adam Paszke)
216
+ Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
217
+ Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
218
+ Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
219
+ Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
220
+ Copyright (c) 2011-2013 NYU (Clement Farabet)
221
+ Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
222
+ Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
223
+ Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
224
+
225
+
226
+ Terms of the BSD 3-Clause License:
227
+ ---------------------------------------------
228
+ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
229
+
230
+ 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
231
+
232
+ 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
233
+
234
+ 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
235
+
236
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
237
+
238
+
239
+
240
+ Open Source Software licensed under the BSD 3-Clause License and Other Licenses of the Third-Party Components therein:
241
+ ---------------------------------------------
242
+ 1. numpy
243
+ Copyright (c) 2005-2020, NumPy Developers.
244
+ All rights reserved.
245
+
246
+ A copy of BSD 3-Clause License is included in this file.
247
+
248
+ The NumPy repository and source distributions bundle several libraries that are
249
+ compatibly licensed. We list these here.
250
+
251
+ Name: Numpydoc
252
+ Files: doc/sphinxext/numpydoc/*
253
+ License: BSD-2-Clause
254
+ For details, see doc/sphinxext/LICENSE.txt
255
+
256
+ Name: scipy-sphinx-theme
257
+ Files: doc/scipy-sphinx-theme/*
258
+ License: BSD-3-Clause AND PSF-2.0 AND Apache-2.0
259
+ For details, see doc/scipy-sphinx-theme/LICENSE.txt
260
+
261
+ Name: lapack-lite
262
+ Files: numpy/linalg/lapack_lite/*
263
+ License: BSD-3-Clause
264
+ For details, see numpy/linalg/lapack_lite/LICENSE.txt
265
+
266
+ Name: tempita
267
+ Files: tools/npy_tempita/*
268
+ License: MIT
269
+ For details, see tools/npy_tempita/license.txt
270
+
271
+ Name: dragon4
272
+ Files: numpy/core/src/multiarray/dragon4.c
273
+ License: MIT
274
+ For license text, see numpy/core/src/multiarray/dragon4.c
275
+
276
+
277
+
278
+ Open Source Software licensed under the MIT license:
279
+ ---------------------------------------------
280
+ 1. facexlib
281
+ Copyright (c) 2020 Xintao Wang
282
+
283
+ 2. opencv-python
284
+ Copyright (c) Olli-Pekka Heinisuo
285
+ Please note that only files in cv2 package are used.
286
+
287
+
288
+ Terms of the MIT License:
289
+ ---------------------------------------------
290
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
291
+
292
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
293
+
294
+ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
295
+
296
+
297
+
298
+ Open Source Software licensed under the MIT license and Other Licenses of the Third-Party Components therein:
299
+ ---------------------------------------------
300
+ 1. tqdm
301
+ Copyright (c) 2013 noamraph
302
+
303
+ `tqdm` is a product of collaborative work.
304
+ Unless otherwise stated, all authors (see commit logs) retain copyright
305
+ for their respective work, and release the work under the MIT licence
306
+ (text below).
307
+
308
+ Exceptions or notable authors are listed below
309
+ in reverse chronological order:
310
+
311
+ * files: *
312
+ MPLv2.0 2015-2020 (c) Casper da Costa-Luis
313
+ [casperdcl](https://github.com/casperdcl).
314
+ * files: tqdm/_tqdm.py
315
+ MIT 2016 (c) [PR #96] on behalf of Google Inc.
316
+ * files: tqdm/_tqdm.py setup.py README.rst MANIFEST.in .gitignore
317
+ MIT 2013 (c) Noam Yorav-Raphael, original author.
318
+
319
+ [PR #96]: https://github.com/tqdm/tqdm/pull/96
320
+
321
+
322
+ Mozilla Public Licence (MPL) v. 2.0 - Exhibit A
323
+ -----------------------------------------------
324
+
325
+ This Source Code Form is subject to the terms of the
326
+ Mozilla Public License, v. 2.0.
327
+ If a copy of the MPL was not distributed with this file,
328
+ You can obtain one at https://mozilla.org/MPL/2.0/.
329
+
330
+
331
+ MIT License (MIT)
332
+ -----------------
333
+
334
+ Copyright (c) 2013 noamraph
335
+
336
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
337
+ this software and associated documentation files (the "Software"), to deal in
338
+ the Software without restriction, including without limitation the rights to
339
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
340
+ the Software, and to permit persons to whom the Software is furnished to do so,
341
+ subject to the following conditions:
342
+
343
+ The above copyright notice and this permission notice shall be included in all
344
+ copies or substantial portions of the Software.
345
+
346
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
347
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
348
+ FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
349
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
350
+ IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
351
+ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
third_part/GFPGAN/gfpgan/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa
2
+
3
+ from .archs import *
4
+ from .data import *
5
+ from .models import *
6
+ from .utils import *
7
+
8
+ # from .version import *