Spaces:
Runtime error
Runtime error
import numpy | |
import torch | |
import gradio as gr | |
from einops import rearrange | |
from torchvision import transforms | |
from model import CANNet | |
model = CANNet() | |
checkpoint = torch.load('part_B_pre.pth.tar',map_location=torch.device('cpu')) | |
model.load_state_dict(checkpoint['state_dict']) | |
model.eval() | |
## Defining the transform function | |
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) | |
def crowd(img): | |
## Transforming the image | |
img = transform(img) | |
## Adding batch dimension | |
img = rearrange(img, "c h w -> 1 c h w") | |
## Slicing the image into four parts | |
h = img.shape[2] | |
w = img.shape[3] | |
h_d = int(h/2) | |
w_d = int(w/2) | |
img_1 = img[:,:,:h_d,:w_d] | |
img_2 = img[:,:,:h_d,w_d:] | |
img_3 = img[:,:,h_d:,:w_d] | |
img_4 = img[:,:,h_d:,w_d:] | |
## Inputting the 4 images into the model, converting it to numpy array, and summing to get the density | |
with torch.no_grad(): | |
density_1 = model(img_1).numpy().sum() | |
density_2 = model(img_2).numpy().sum() | |
density_3 = model(img_3).numpy().sum() | |
density_4 = model(img_4).numpy().sum() | |
## Summing up the estimated density and rounding the result to get an integer | |
pred = density_1 + density_2 + density_3 + density_4 | |
pred = int(pred.round()) | |
return pred | |
outputs = gr.outputs.Textbox(type="text", label="Estimated crowd density:") | |
inputs = gr.inputs.Image(type="numpy", label="Input the image here:") | |
gr.Interface(fn=crowd, inputs=inputs, outputs=outputs, allow_flagging="never").launch(inbrowser=True) |