|
import importlib |
|
import os |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import PretrainedConfig |
|
|
|
|
|
def seed_everything(seed): |
|
os.environ["PL_GLOBAL_SEED"] = str(seed) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
def is_torch2_available(): |
|
return hasattr(F, "scaled_dot_product_attention") |
|
|
|
|
|
def instantiate_from_config(config): |
|
if "target" not in config: |
|
if config == '__is_first_stage__' or config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", {})) |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def drop_seq_token(seq, drop_rate=0.5): |
|
idx = torch.randperm(seq.size(1)) |
|
num_keep_tokens = int(len(idx) * (1 - drop_rate)) |
|
idx = idx[:num_keep_tokens] |
|
seq = seq[:, idx] |
|
return seq |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def resize_numpy_image_long(image, resize_long_edge=768): |
|
h, w = image.shape[:2] |
|
if max(h, w) <= resize_long_edge: |
|
return image |
|
k = resize_long_edge / max(h, w) |
|
h = int(h * k) |
|
w = int(w * k) |
|
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) |
|
return image |
|
|