zhengchong commited on
Commit
21c6c10
1 Parent(s): 3f59270

chore: Remove unused files and dependencies

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. __pycache__/utils.cpython-39.pyc +0 -0
  2. app.py +13 -3
  3. model/DensePose/__pycache__/__init__.cpython-39.pyc +0 -0
  4. model/SCHP/LICENSE +0 -21
  5. model/SCHP/README.md +0 -129
  6. model/SCHP/__init__.py +0 -163
  7. model/SCHP/__pycache__/__init__.cpython-310.pyc +0 -0
  8. model/SCHP/__pycache__/__init__.cpython-39.pyc +0 -0
  9. model/SCHP/datasets/__init__.py +0 -0
  10. model/SCHP/datasets/__pycache__/__init__.cpython-39.pyc +0 -0
  11. model/SCHP/datasets/__pycache__/simple_extractor_dataset.cpython-39.pyc +0 -0
  12. model/SCHP/datasets/datasets.py +0 -205
  13. model/SCHP/datasets/simple_extractor_dataset.py +0 -92
  14. model/SCHP/datasets/target_generation.py +0 -40
  15. model/SCHP/environment.yaml +0 -49
  16. model/SCHP/evaluate.py +0 -210
  17. model/SCHP/file_list.txt +0 -0
  18. model/SCHP/mhp_extension/.ipynb_checkpoints/demo-checkpoint.ipynb +0 -0
  19. model/SCHP/mhp_extension/README.md +0 -38
  20. model/SCHP/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc +0 -0
  21. model/SCHP/mhp_extension/coco_style_annotation_creator/human_to_coco.py +0 -166
  22. model/SCHP/mhp_extension/coco_style_annotation_creator/pycococreatortools.py +0 -114
  23. model/SCHP/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py +0 -74
  24. model/SCHP/mhp_extension/data/DemoDataset/global_pic/demo.jpg +0 -0
  25. model/SCHP/mhp_extension/demo.ipynb +0 -0
  26. model/SCHP/mhp_extension/demo/demo.jpg +0 -0
  27. model/SCHP/mhp_extension/demo/demo_global_human_parsing.png +0 -0
  28. model/SCHP/mhp_extension/demo/demo_instance_human_mask.png +0 -0
  29. model/SCHP/mhp_extension/demo/demo_multiple_human_parsing.png +0 -0
  30. model/SCHP/mhp_extension/detectron2/.circleci/config.yml +0 -179
  31. model/SCHP/mhp_extension/detectron2/.clang-format +0 -85
  32. model/SCHP/mhp_extension/detectron2/.flake8 +0 -9
  33. model/SCHP/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md +0 -5
  34. model/SCHP/mhp_extension/detectron2/.github/CONTRIBUTING.md +0 -49
  35. model/SCHP/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg +0 -1
  36. model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md +0 -5
  37. model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md +0 -36
  38. model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml +0 -9
  39. model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +0 -31
  40. model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md +0 -26
  41. model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md +0 -45
  42. model/SCHP/mhp_extension/detectron2/.github/pull_request_template.md +0 -9
  43. model/SCHP/mhp_extension/detectron2/.gitignore +0 -46
  44. model/SCHP/mhp_extension/detectron2/GETTING_STARTED.md +0 -79
  45. model/SCHP/mhp_extension/detectron2/INSTALL.md +0 -184
  46. model/SCHP/mhp_extension/detectron2/LICENSE +0 -201
  47. model/SCHP/mhp_extension/detectron2/MODEL_ZOO.md +0 -903
  48. model/SCHP/mhp_extension/detectron2/README.md +0 -56
  49. model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml +0 -18
  50. model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml +0 -31
__pycache__/utils.cpython-39.pyc ADDED
Binary file (20.3 kB). View file
 
app.py CHANGED
@@ -12,7 +12,7 @@ from diffusers.image_processor import VaeImageProcessor
12
  from huggingface_hub import snapshot_download
13
  from PIL import Image
14
 
15
- from model.cloth_masker import AutoMasker, vis_mask
16
  from model.pipeline import CatVTONPipeline
17
  from utils import init_weight_dtype, resize_and_crop, resize_and_padding
18
 
@@ -123,9 +123,9 @@ pipeline = CatVTONPipeline(
123
  )
124
  # AutoMasker
125
  mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
126
- automasker = AutoMasker(
127
  densepose_ckpt=os.path.join(repo_path, "DensePose"),
128
- schp_ckpt=os.path.join(repo_path, "SCHP"),
129
  device='cuda',
130
  )
131
 
@@ -227,6 +227,9 @@ HEADER = """
227
  <a href="http://120.76.142.206:8888" style="margin: 0 2px;">
228
  <img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
229
  </a>
 
 
 
230
  <a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
231
  <img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
232
  </a>
@@ -234,6 +237,13 @@ HEADER = """
234
  <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
235
  </a>
236
  </div>
 
 
 
 
 
 
 
237
  """
238
 
239
  def app_gradio():
 
12
  from huggingface_hub import snapshot_download
13
  from PIL import Image
14
 
15
+ from model.cloth_masker import AutoMaskerSeg, vis_mask
16
  from model.pipeline import CatVTONPipeline
17
  from utils import init_weight_dtype, resize_and_crop, resize_and_padding
18
 
 
123
  )
124
  # AutoMasker
125
  mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
126
+ automasker = AutoMaskerSeg(
127
  densepose_ckpt=os.path.join(repo_path, "DensePose"),
128
+ segformer_ckpt="/home/chongzheng_p23/data/Projects/CatVTON-main/Models/segformer_b3_clothes",
129
  device='cuda',
130
  )
131
 
 
227
  <a href="http://120.76.142.206:8888" style="margin: 0 2px;">
228
  <img src='https://img.shields.io/badge/Demo-Gradio-gold?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
229
  </a>
230
+ <a href="https://huggingface.co/spaces/zhengchong/CatVTON" style="margin: 0 2px;">
231
+ <img src='https://img.shields.io/badge/Space-ZeroGPU-orange?style=flat&logo=Gradio&logoColor=red' alt='Demo'>
232
+ </a>
233
  <a href='https://zheng-chong.github.io/CatVTON/' style="margin: 0 2px;">
234
  <img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
235
  </a>
 
237
  <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
238
  </a>
239
  </div>
240
+ <br>
241
+
242
+ · Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for this demo. <br>
243
+ · To adapt to ZeroGPU, we replace SCHP with <a href="https://huggingface.co/mattmdjaga/segformer_b2_clothes">SegFormer</a> which may result in differences from <a href="http://120.76.142.206:8888">our own demo</a>. <br>
244
+ · This demo and our weights are only open for **Non-commercial Use**. <br>
245
+ · SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.
246
+
247
  """
248
 
249
  def app_gradio():
model/DensePose/__pycache__/__init__.cpython-39.pyc CHANGED
Binary files a/model/DensePose/__pycache__/__init__.cpython-39.pyc and b/model/DensePose/__pycache__/__init__.cpython-39.pyc differ
 
model/SCHP/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2020 Peike Li
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/README.md DELETED
@@ -1,129 +0,0 @@
1
- # Self Correction for Human Parsing
2
-
3
- ![Python 3.6](https://img.shields.io/badge/python-3.6-green.svg)
4
- [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
5
-
6
- An out-of-box human parsing representation extractor.
7
-
8
- Our solution ranks 1st for all human parsing tracks (including single, multiple and video) in the third LIP challenge!
9
-
10
- ![lip-visualization](./demo/lip-visualization.jpg)
11
-
12
- Features:
13
- - [x] Out-of-box human parsing extractor for other downstream applications.
14
- - [x] Pretrained model on three popular single person human parsing datasets.
15
- - [x] Training and inferecne code.
16
- - [x] Simple yet effective extension on multi-person and video human parsing tasks.
17
-
18
- ## Requirements
19
-
20
- ```
21
- conda env create -f environment.yaml
22
- conda activate schp
23
- pip install -r requirements.txt
24
- ```
25
-
26
- ## Simple Out-of-Box Extractor
27
-
28
- The easiest way to get started is to use our trained SCHP models on your own images to extract human parsing representations. Here we provided state-of-the-art [trained models](https://drive.google.com/drive/folders/1uOaQCpNtosIjEL2phQKEdiYd0Td18jNo?usp=sharing) on three popular datasets. Theses three datasets have different label system, you can choose the best one to fit on your own task.
29
-
30
- **LIP** ([exp-schp-201908261155-lip.pth](https://drive.google.com/file/d/1k4dllHpu0bdx38J7H28rVVLpU-kOHmnH/view?usp=sharing))
31
-
32
- * mIoU on LIP validation: **59.36 %**.
33
-
34
- * LIP is the largest single person human parsing dataset with 50000+ images. This dataset focus more on the complicated real scenarios. LIP has 20 labels, including 'Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'.
35
-
36
- **ATR** ([exp-schp-201908301523-atr.pth](https://drive.google.com/file/d/1ruJg4lqR_jgQPj-9K0PP-L2vJERYOxLP/view?usp=sharing))
37
-
38
- * mIoU on ATR test: **82.29%**.
39
-
40
- * ATR is a large single person human parsing dataset with 17000+ images. This dataset focus more on fashion AI. ATR has 18 labels, including 'Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'.
41
-
42
- **Pascal-Person-Part** ([exp-schp-201908270938-pascal-person-part.pth](https://drive.google.com/file/d/1E5YwNKW2VOEayK9mWCS3Kpsxf-3z04ZE/view?usp=sharing))
43
-
44
- * mIoU on Pascal-Person-Part validation: **71.46** %.
45
-
46
- * Pascal Person Part is a tiny single person human parsing dataset with 3000+ images. This dataset focus more on body parts segmentation. Pascal Person Part has 7 labels, including 'Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'.
47
-
48
- Choose one and have fun on your own task!
49
-
50
- To extract the human parsing representation, simply put your own image in the `INPUT_PATH` folder, then download a pretrained model and run the following command. The output images with the same file name will be saved in `OUTPUT_PATH`
51
-
52
- ```
53
- python simple_extractor.py --dataset [DATASET] --model-restore [CHECKPOINT_PATH] --input-dir [INPUT_PATH] --output-dir [OUTPUT_PATH]
54
- ```
55
-
56
- **[Updated]** Here is also a [colab demo example](https://colab.research.google.com/drive/1JOwOPaChoc9GzyBi5FUEYTSaP2qxJl10?usp=sharing) for quick inference provided by [@levindabhi](https://github.com/levindabhi).
57
-
58
- The `DATASET` command has three options, including 'lip', 'atr' and 'pascal'. Note each pixel in the output images denotes the predicted label number. The output images have the same size as the input ones. To better visualization, we put a palette with the output images. We suggest you to read the image with `PIL`.
59
-
60
- If you need not only the final parsing images, but also the feature map representations. Add `--logits` command to save the output feature maps. These feature maps are the logits before softmax layer.
61
-
62
- ## Dataset Preparation
63
-
64
- Please download the [LIP](http://sysu-hcp.net/lip/) dataset following the below structure.
65
-
66
- ```commandline
67
- data/LIP
68
- |--- train_imgaes # 30462 training single person images
69
- |--- val_images # 10000 validation single person images
70
- |--- train_segmentations # 30462 training annotations
71
- |--- val_segmentations # 10000 training annotations
72
- |--- train_id.txt # training image list
73
- |--- val_id.txt # validation image list
74
- ```
75
-
76
- ## Training
77
-
78
- ```
79
- python train.py
80
- ```
81
- By default, the trained model will be saved in `./log` directory. Please read the arguments for more details.
82
-
83
- ## Evaluation
84
- ```
85
- python evaluate.py --model-restore [CHECKPOINT_PATH]
86
- ```
87
- CHECKPOINT_PATH should be the path of trained model.
88
-
89
- ## Extension on Multiple Human Parsing
90
-
91
- Please read [MultipleHumanParsing.md](./mhp_extension/README.md) for more details.
92
-
93
- ## Citation
94
-
95
- Please cite our work if you find this repo useful in your research.
96
-
97
- ```latex
98
- @article{li2020self,
99
- title={Self-Correction for Human Parsing},
100
- author={Li, Peike and Xu, Yunqiu and Wei, Yunchao and Yang, Yi},
101
- journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
102
- year={2020},
103
- doi={10.1109/TPAMI.2020.3048039}}
104
- ```
105
-
106
- ## Visualization
107
-
108
- * Source Image.
109
- ![demo](./demo/demo.jpg)
110
- * LIP Parsing Result.
111
- ![demo-lip](./demo/demo_lip.png)
112
- * ATR Parsing Result.
113
- ![demo-atr](./demo/demo_atr.png)
114
- * Pascal-Person-Part Parsing Result.
115
- ![demo-pascal](./demo/demo_pascal.png)
116
- * Source Image.
117
- ![demo](./mhp_extension/demo/demo.jpg)
118
- * Instance Human Mask.
119
- ![demo-lip](./mhp_extension/demo/demo_instance_human_mask.png)
120
- * Global Human Parsing Result.
121
- ![demo-lip](./mhp_extension/demo/demo_global_human_parsing.png)
122
- * Multiple Human Parsing Result.
123
- ![demo-lip](./mhp_extension/demo/demo_multiple_human_parsing.png)
124
-
125
-
126
- ## Related
127
- Our code adopts the [InplaceSyncBN](https://github.com/mapillary/inplace_abn) to save gpu memory cost.
128
-
129
- There is also a [PaddlePaddle](https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/ACE2P) Implementation of this project.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/__init__.py DELETED
@@ -1,163 +0,0 @@
1
- from model.SCHP import networks
2
- from model.SCHP.utils.transforms import get_affine_transform, transform_logits
3
-
4
- from collections import OrderedDict
5
- import torch
6
- import numpy as np
7
- import cv2
8
- from PIL import Image
9
- from torchvision import transforms
10
-
11
- def get_palette(num_cls):
12
- """ Returns the color map for visualizing the segmentation mask.
13
- Args:
14
- num_cls: Number of classes
15
- Returns:
16
- The color map
17
- """
18
- n = num_cls
19
- palette = [0] * (n * 3)
20
- for j in range(0, n):
21
- lab = j
22
- palette[j * 3 + 0] = 0
23
- palette[j * 3 + 1] = 0
24
- palette[j * 3 + 2] = 0
25
- i = 0
26
- while lab:
27
- palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
28
- palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
29
- palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
30
- i += 1
31
- lab >>= 3
32
- return palette
33
-
34
- dataset_settings = {
35
- 'lip': {
36
- 'input_size': [473, 473],
37
- 'num_classes': 20,
38
- 'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
39
- 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
40
- 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
41
- },
42
- 'atr': {
43
- 'input_size': [512, 512],
44
- 'num_classes': 18,
45
- 'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
46
- 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
47
- },
48
- 'pascal': {
49
- 'input_size': [512, 512],
50
- 'num_classes': 7,
51
- 'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
52
- }
53
- }
54
-
55
- class SCHP:
56
- def __init__(self, ckpt_path, device):
57
- dataset_type = None
58
- if 'lip' in ckpt_path:
59
- dataset_type = 'lip'
60
- elif 'atr' in ckpt_path:
61
- dataset_type = 'atr'
62
- elif 'pascal' in ckpt_path:
63
- dataset_type = 'pascal'
64
- assert dataset_type is not None, 'Dataset type not found in checkpoint path'
65
- self.device = device
66
- self.num_classes = dataset_settings[dataset_type]['num_classes']
67
- self.input_size = dataset_settings[dataset_type]['input_size']
68
- self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0]
69
- self.palette = get_palette(self.num_classes)
70
-
71
- self.label = dataset_settings[dataset_type]['label']
72
- self.model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None).to(device)
73
- self.load_ckpt(ckpt_path)
74
- self.model.eval()
75
-
76
- self.transform = transforms.Compose([
77
- transforms.ToTensor(),
78
- transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
79
- ])
80
- self.upsample = torch.nn.Upsample(size=self.input_size, mode='bilinear', align_corners=True)
81
-
82
-
83
- def load_ckpt(self, ckpt_path):
84
- state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict']
85
- new_state_dict = OrderedDict()
86
- for k, v in state_dict.items():
87
- name = k[7:] # remove `module.`
88
- new_state_dict[name] = v
89
- self.model.load_state_dict(new_state_dict)
90
-
91
- def _box2cs(self, box):
92
- x, y, w, h = box[:4]
93
- return self._xywh2cs(x, y, w, h)
94
-
95
- def _xywh2cs(self, x, y, w, h):
96
- center = np.zeros((2), dtype=np.float32)
97
- center[0] = x + w * 0.5
98
- center[1] = y + h * 0.5
99
- if w > self.aspect_ratio * h:
100
- h = w * 1.0 / self.aspect_ratio
101
- elif w < self.aspect_ratio * h:
102
- w = h * self.aspect_ratio
103
- scale = np.array([w, h], dtype=np.float32)
104
- return center, scale
105
-
106
- def preprocess(self, image):
107
- if isinstance(image, str):
108
- img = cv2.imread(image, cv2.IMREAD_COLOR)
109
- elif isinstance(image, Image.Image):
110
- # to cv2 format
111
- img = np.array(image)
112
-
113
- h, w, _ = img.shape
114
- # Get person center and scale
115
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
116
- r = 0
117
- trans = get_affine_transform(person_center, s, r, self.input_size)
118
- input = cv2.warpAffine(
119
- img,
120
- trans,
121
- (int(self.input_size[1]), int(self.input_size[0])),
122
- flags=cv2.INTER_LINEAR,
123
- borderMode=cv2.BORDER_CONSTANT,
124
- borderValue=(0, 0, 0))
125
-
126
- input = self.transform(input).to(self.device).unsqueeze(0)
127
- meta = {
128
- 'center': person_center,
129
- 'height': h,
130
- 'width': w,
131
- 'scale': s,
132
- 'rotation': r
133
- }
134
- return input, meta
135
-
136
-
137
- def __call__(self, image_or_path):
138
- if isinstance(image_or_path, list):
139
- image_list = []
140
- meta_list = []
141
- for image in image_or_path:
142
- image, meta = self.preprocess(image)
143
- image_list.append(image)
144
- meta_list.append(meta)
145
- image = torch.cat(image_list, dim=0)
146
- else:
147
- image, meta = self.preprocess(image_or_path)
148
- meta_list = [meta]
149
-
150
- output = self.model(image)
151
- upsample_outputs = self.upsample(output[0][-1])
152
- upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC
153
-
154
- output_img_list = []
155
- for upsample_output, meta in zip(upsample_outputs, meta_list):
156
- c, s, w, h = meta['center'], meta['scale'], meta['width'], meta['height']
157
- logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=self.input_size)
158
- parsing_result = np.argmax(logits_result, axis=2)
159
- output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
160
- output_img.putpalette(self.palette)
161
- output_img_list.append(output_img)
162
-
163
- return output_img_list[0] if len(output_img_list) == 1 else output_img_list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (4.95 kB)
 
model/SCHP/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (4.96 kB)
 
model/SCHP/datasets/__init__.py DELETED
File without changes
model/SCHP/datasets/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (170 Bytes)
 
model/SCHP/datasets/__pycache__/simple_extractor_dataset.cpython-39.pyc DELETED
Binary file (2.79 kB)
 
model/SCHP/datasets/datasets.py DELETED
@@ -1,205 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- encoding: utf-8 -*-
3
-
4
- """
5
- @Author : Peike Li
6
- @Contact : peike.li@yahoo.com
7
- @File : datasets.py
8
- @Time : 8/4/19 3:35 PM
9
- @Desc :
10
- @License : This source code is licensed under the license found in the
11
- LICENSE file in the root directory of this source tree.
12
- """
13
-
14
- import os
15
- import numpy as np
16
- import random
17
- import torch
18
- import cv2
19
- from torch.utils import data
20
- from utils.transforms import get_affine_transform
21
-
22
-
23
- class LIPDataSet(data.Dataset):
24
- def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
25
- rotation_factor=30, ignore_label=255, transform=None):
26
- self.root = root
27
- self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
28
- self.crop_size = np.asarray(crop_size)
29
- self.ignore_label = ignore_label
30
- self.scale_factor = scale_factor
31
- self.rotation_factor = rotation_factor
32
- self.flip_prob = 0.5
33
- self.transform = transform
34
- self.dataset = dataset
35
-
36
- list_path = os.path.join(self.root, self.dataset + '_id.txt')
37
- train_list = [i_id.strip() for i_id in open(list_path)]
38
-
39
- self.train_list = train_list
40
- self.number_samples = len(self.train_list)
41
-
42
- def __len__(self):
43
- return self.number_samples
44
-
45
- def _box2cs(self, box):
46
- x, y, w, h = box[:4]
47
- return self._xywh2cs(x, y, w, h)
48
-
49
- def _xywh2cs(self, x, y, w, h):
50
- center = np.zeros((2), dtype=np.float32)
51
- center[0] = x + w * 0.5
52
- center[1] = y + h * 0.5
53
- if w > self.aspect_ratio * h:
54
- h = w * 1.0 / self.aspect_ratio
55
- elif w < self.aspect_ratio * h:
56
- w = h * self.aspect_ratio
57
- scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
58
- return center, scale
59
-
60
- def __getitem__(self, index):
61
- train_item = self.train_list[index]
62
-
63
- im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
64
- parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
65
-
66
- im = cv2.imread(im_path, cv2.IMREAD_COLOR)
67
- h, w, _ = im.shape
68
- parsing_anno = np.zeros((h, w), dtype=np.long)
69
-
70
- # Get person center and scale
71
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
72
- r = 0
73
-
74
- if self.dataset != 'test':
75
- # Get pose annotation
76
- parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
77
- if self.dataset == 'train' or self.dataset == 'trainval':
78
- sf = self.scale_factor
79
- rf = self.rotation_factor
80
- s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
81
- r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
82
-
83
- if random.random() <= self.flip_prob:
84
- im = im[:, ::-1, :]
85
- parsing_anno = parsing_anno[:, ::-1]
86
- person_center[0] = im.shape[1] - person_center[0] - 1
87
- right_idx = [15, 17, 19]
88
- left_idx = [14, 16, 18]
89
- for i in range(0, 3):
90
- right_pos = np.where(parsing_anno == right_idx[i])
91
- left_pos = np.where(parsing_anno == left_idx[i])
92
- parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
93
- parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
94
-
95
- trans = get_affine_transform(person_center, s, r, self.crop_size)
96
- input = cv2.warpAffine(
97
- im,
98
- trans,
99
- (int(self.crop_size[1]), int(self.crop_size[0])),
100
- flags=cv2.INTER_LINEAR,
101
- borderMode=cv2.BORDER_CONSTANT,
102
- borderValue=(0, 0, 0))
103
-
104
- if self.transform:
105
- input = self.transform(input)
106
-
107
- meta = {
108
- 'name': train_item,
109
- 'center': person_center,
110
- 'height': h,
111
- 'width': w,
112
- 'scale': s,
113
- 'rotation': r
114
- }
115
-
116
- if self.dataset == 'val' or self.dataset == 'test':
117
- return input, meta
118
- else:
119
- label_parsing = cv2.warpAffine(
120
- parsing_anno,
121
- trans,
122
- (int(self.crop_size[1]), int(self.crop_size[0])),
123
- flags=cv2.INTER_NEAREST,
124
- borderMode=cv2.BORDER_CONSTANT,
125
- borderValue=(255))
126
-
127
- label_parsing = torch.from_numpy(label_parsing)
128
-
129
- return input, label_parsing, meta
130
-
131
-
132
- class LIPDataValSet(data.Dataset):
133
- def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
134
- self.root = root
135
- self.crop_size = crop_size
136
- self.transform = transform
137
- self.flip = flip
138
- self.dataset = dataset
139
- self.root = root
140
- self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
141
- self.crop_size = np.asarray(crop_size)
142
-
143
- val_list=[]
144
- for root, dirs, files in os.walk("/home/chongzheng_p23/data/Datasets/UniFashion/YOOX/YOOX-Images"):
145
- for file in files:
146
- if file.endswith(".jpg"):
147
- source_file_path = os.path.join(root, file)
148
- val_list.append(source_file_path)
149
-
150
- self.val_list = val_list
151
- self.number_samples = len(self.val_list)
152
-
153
- def __len__(self):
154
- return len(self.val_list)
155
-
156
- def _box2cs(self, box):
157
- x, y, w, h = box[:4]
158
- return self._xywh2cs(x, y, w, h)
159
-
160
- def _xywh2cs(self, x, y, w, h):
161
- center = np.zeros((2), dtype=np.float32)
162
- center[0] = x + w * 0.5
163
- center[1] = y + h * 0.5
164
- if w > self.aspect_ratio * h:
165
- h = w * 1.0 / self.aspect_ratio
166
- elif w < self.aspect_ratio * h:
167
- w = h * self.aspect_ratio
168
- scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
169
-
170
- return center, scale
171
-
172
- def __getitem__(self, index):
173
- val_item = self.val_list[index]
174
- # Load training image
175
- im_path = val_item
176
- im = cv2.imread(im_path, cv2.IMREAD_COLOR)
177
- h, w, _ = im.shape
178
- # Get person center and scale
179
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
180
- r = 0
181
- trans = get_affine_transform(person_center, s, r, self.crop_size)
182
- input = cv2.warpAffine(
183
- im,
184
- trans,
185
- (int(self.crop_size[1]), int(self.crop_size[0])),
186
- flags=cv2.INTER_LINEAR,
187
- borderMode=cv2.BORDER_CONSTANT,
188
- borderValue=(0, 0, 0))
189
- input = self.transform(input)
190
- flip_input = input.flip(dims=[-1])
191
- if self.flip:
192
- batch_input_im = torch.stack([input, flip_input])
193
- else:
194
- batch_input_im = input
195
-
196
- meta = {
197
- 'name': val_item, #root
198
- 'center': person_center,
199
- 'height': h,
200
- 'width': w,
201
- 'scale': s,
202
- 'rotation': r
203
- }
204
-
205
- return batch_input_im, meta
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/datasets/simple_extractor_dataset.py DELETED
@@ -1,92 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- encoding: utf-8 -*-
3
-
4
- """
5
- @Author : Peike Li
6
- @Contact : peike.li@yahoo.com
7
- @File : dataset.py
8
- @Time : 8/30/19 9:12 PM
9
- @Desc : Dataset Definition
10
- @License : This source code is licensed under the license found in the
11
- LICENSE file in the root directory of this source tree.
12
- """
13
-
14
- import os
15
- import cv2
16
- import numpy as np
17
-
18
- from torch.utils import data
19
- from utils.transforms import get_affine_transform
20
-
21
-
22
- class SimpleFolderDataset(data.Dataset):
23
- def __init__(self, root, input_size=[512, 512], transform=None):
24
- self.root = root
25
- self.input_size = input_size
26
- self.transform = transform
27
- self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
28
- self.input_size = np.asarray(input_size)
29
-
30
- self.file_list=[]
31
- self.root_list=[]
32
- for root, dirs, files in os.walk(root):
33
- for file in files:
34
- if file.endswith(".jpg"):
35
- source_file_path = os.path.join(root, file)
36
- self.file_list.append(source_file_path)
37
- self.root_list.append(root)
38
-
39
- def __len__(self):
40
- return len(self.file_list)
41
-
42
- def _box2cs(self, box):
43
- x, y, w, h = box[:4]
44
- return self._xywh2cs(x, y, w, h)
45
-
46
- def _xywh2cs(self, x, y, w, h):
47
- center = np.zeros((2), dtype=np.float32)
48
- center[0] = x + w * 0.5
49
- center[1] = y + h * 0.5
50
- if w > self.aspect_ratio * h:
51
- h = w * 1.0 / self.aspect_ratio
52
- elif w < self.aspect_ratio * h:
53
- w = h * self.aspect_ratio
54
- scale = np.array([w, h], dtype=np.float32)
55
- return center, scale
56
-
57
- def __getitem__(self, index):
58
- img_path = self.file_list[index]
59
- root = self.root_list[index]
60
- img_name = img_path.split("/")[-1].split(".")[0]
61
- img = cv2.imread(img_path, cv2.IMREAD_COLOR)
62
-
63
- if img is None:
64
- return self.__getitem__(index+1)
65
- else:
66
- h, w, _ = img.shape
67
-
68
- # Get person center and scale
69
- person_center, s = self._box2cs([0, 0, w - 1, h - 1])
70
- r = 0
71
- trans = get_affine_transform(person_center, s, r, self.input_size)
72
- input = cv2.warpAffine(
73
- img,
74
- trans,
75
- (int(self.input_size[1]), int(self.input_size[0])),
76
- flags=cv2.INTER_LINEAR,
77
- borderMode=cv2.BORDER_CONSTANT,
78
- borderValue=(0, 0, 0))
79
-
80
- input = self.transform(input)
81
- meta = {
82
- 'img_path': img_path,
83
- 'name': img_name,
84
- 'root': root,
85
- 'center': person_center,
86
- 'height': h,
87
- 'width': w,
88
- 'scale': s,
89
- 'rotation': r
90
- }
91
-
92
- return input, meta
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/datasets/target_generation.py DELETED
@@ -1,40 +0,0 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
-
5
- def generate_edge_tensor(label, edge_width=3):
6
- # label = label.type(torch.cuda.FloatTensor)
7
- if len(label.shape) == 2:
8
- label = label.unsqueeze(0)
9
- n, h, w = label.shape
10
- edge = torch.zeros(label.shape, dtype=torch.float)#.cuda()
11
- # right
12
- edge_right = edge[:, 1:h, :]
13
- edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
14
- & (label[:, :h - 1, :] != 255)] = 1
15
-
16
- # up
17
- edge_up = edge[:, :, :w - 1]
18
- edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
19
- & (label[:, :, :w - 1] != 255)
20
- & (label[:, :, 1:w] != 255)] = 1
21
-
22
- # upright
23
- edge_upright = edge[:, :h - 1, :w - 1]
24
- edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
25
- & (label[:, :h - 1, :w - 1] != 255)
26
- & (label[:, 1:h, 1:w] != 255)] = 1
27
-
28
- # bottomright
29
- edge_bottomright = edge[:, :h - 1, 1:w]
30
- edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
31
- & (label[:, :h - 1, 1:w] != 255)
32
- & (label[:, 1:h, :w - 1] != 255)] = 1
33
-
34
- kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float)#.cuda()
35
- with torch.no_grad():
36
- edge = edge.unsqueeze(1)
37
- edge = F.conv2d(edge, kernel, stride=1, padding=1)
38
- edge[edge!=0] = 1
39
- edge = edge.squeeze()
40
- return edge
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/environment.yaml DELETED
@@ -1,49 +0,0 @@
1
- name: schp
2
- channels:
3
- - pytorch
4
- - defaults
5
- dependencies:
6
- - _libgcc_mutex=0.1=main
7
- - blas=1.0=mkl
8
- - ca-certificates=2020.12.8=h06a4308_0
9
- - certifi=2020.12.5=py38h06a4308_0
10
- - cudatoolkit=10.1.243=h6bb024c_0
11
- - freetype=2.10.4=h5ab3b9f_0
12
- - intel-openmp=2020.2=254
13
- - jpeg=9b=h024ee3a_2
14
- - lcms2=2.11=h396b838_0
15
- - ld_impl_linux-64=2.33.1=h53a641e_7
16
- - libedit=3.1.20191231=h14c3975_1
17
- - libffi=3.3=he6710b0_2
18
- - libgcc-ng=9.1.0=hdf63c60_0
19
- - libpng=1.6.37=hbc83047_0
20
- - libstdcxx-ng=9.1.0=hdf63c60_0
21
- - libtiff=4.1.0=h2733197_1
22
- - lz4-c=1.9.2=heb0550a_3
23
- - mkl=2020.2=256
24
- - mkl-service=2.3.0=py38he904b0f_0
25
- - mkl_fft=1.2.0=py38h23d657b_0
26
- - mkl_random=1.1.1=py38h0573a6f_0
27
- - ncurses=6.2=he6710b0_1
28
- - ninja=1.10.2=py38hff7bd54_0
29
- - numpy=1.19.2=py38h54aff64_0
30
- - numpy-base=1.19.2=py38hfa32c7d_0
31
- - olefile=0.46=py_0
32
- - openssl=1.1.1i=h27cfd23_0
33
- - pillow=8.0.1=py38he98fc37_0
34
- - pip=20.3.3=py38h06a4308_0
35
- - python=3.8.5=h7579374_1
36
- - readline=8.0=h7b6447c_0
37
- - setuptools=51.0.0=py38h06a4308_2
38
- - six=1.15.0=py38h06a4308_0
39
- - sqlite=3.33.0=h62c20be_0
40
- - tk=8.6.10=hbc83047_0
41
- - tqdm=4.55.0=pyhd3eb1b0_0
42
- - wheel=0.36.2=pyhd3eb1b0_0
43
- - xz=5.2.5=h7b6447c_0
44
- - zlib=1.2.11=h7b6447c_3
45
- - zstd=1.4.5=h9ceee32_0
46
- - pytorch=1.5.1=py3.8_cuda10.1.243_cudnn7.6.3_0
47
- - torchvision=0.6.1=py38_cu101
48
- prefix: /home/peike/opt/anaconda3/envs/schp
49
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/evaluate.py DELETED
@@ -1,210 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- encoding: utf-8 -*-
3
-
4
- """
5
- @Author : Peike Li
6
- @Contact : peike.li@yahoo.com
7
- @File : evaluate.py
8
- @Time : 8/4/19 3:36 PM
9
- @Desc :
10
- @License : This source code is licensed under the license found in the
11
- LICENSE file in the root directory of this source tree.
12
- """
13
-
14
- import os
15
- import argparse
16
- import numpy as np
17
- import torch
18
-
19
- from torch.utils import data
20
- from tqdm import tqdm
21
- from PIL import Image as PILImage
22
- import torchvision.transforms as transforms
23
- import torch.backends.cudnn as cudnn
24
-
25
- import networks
26
- from datasets.datasets import LIPDataValSet
27
- from utils.miou import compute_mean_ioU
28
- from utils.transforms import BGR2RGB_transform
29
- from utils.transforms import transform_parsing
30
-
31
-
32
- def get_arguments():
33
- """Parse all the arguments provided from the CLI.
34
-
35
- Returns:
36
- A list of parsed arguments.
37
- """
38
- parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
39
-
40
- # Network Structure
41
- parser.add_argument("--arch", type=str, default='resnet101')
42
- # Data Preference
43
- parser.add_argument("--data-dir", type=str, default='./data/LIP')
44
- parser.add_argument("--batch-size", type=int, default=1)
45
- parser.add_argument("--input-size", type=str, default='473,473')
46
- parser.add_argument("--num-classes", type=int, default=20)
47
- parser.add_argument("--ignore-label", type=int, default=255)
48
- parser.add_argument("--random-mirror", action="store_true")
49
- parser.add_argument("--random-scale", action="store_true")
50
- # Evaluation Preference
51
- parser.add_argument("--log-dir", type=str, default='./log')
52
- parser.add_argument("--model-restore", type=str,
53
- default='/data1/chongzheng/zhangwq/Self-Correction-Human-Parsing-master/exp-schp-201908301523-atr.pth')
54
- parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.")
55
- parser.add_argument("--save-results", action="store_true", help="whether to save the results.")
56
- parser.add_argument("--flip", action="store_true", help="random flip during the test.")
57
- parser.add_argument("--multi-scales", type=str, default='1', help="multiple scales during the test")
58
- return parser.parse_args()
59
-
60
-
61
- def get_palette(num_cls):
62
- """ Returns the color map for visualizing the segmentation mask.
63
- Args:
64
- num_cls: Number of classes
65
- Returns:
66
- The color map
67
- """
68
- n = num_cls
69
- palette = [0] * (n * 3)
70
- for j in range(0, n):
71
- lab = j
72
- palette[j * 3 + 0] = 0
73
- palette[j * 3 + 1] = 0
74
- palette[j * 3 + 2] = 0
75
- i = 0
76
- while lab:
77
- palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
78
- palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
79
- palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
80
- i += 1
81
- lab >>= 3
82
- return palette
83
-
84
-
85
- def multi_scale_testing(model, batch_input_im, crop_size=[473, 473], flip=True, multi_scales=[1]):
86
- flipped_idx = (15, 14, 17, 16, 19, 18)
87
- if len(batch_input_im.shape) > 4:
88
- batch_input_im = batch_input_im.squeeze()
89
- if len(batch_input_im.shape) == 3:
90
- batch_input_im = batch_input_im.unsqueeze(0)
91
-
92
- interp = torch.nn.Upsample(size=crop_size, mode='bilinear', align_corners=True)
93
- ms_outputs = []
94
- for s in multi_scales:
95
- interp_im = torch.nn.Upsample(scale_factor=s, mode='bilinear', align_corners=True)
96
- scaled_im = interp_im(batch_input_im)
97
- parsing_output = model(scaled_im)
98
- parsing_output = parsing_output[0][-1]
99
- output = parsing_output[0]
100
- if flip:
101
- flipped_output = parsing_output[1]
102
- flipped_output[14:20, :, :] = flipped_output[flipped_idx, :, :]
103
- output += flipped_output.flip(dims=[-1])
104
- output *= 0.5
105
- output = interp(output.unsqueeze(0))
106
- ms_outputs.append(output[0])
107
- ms_fused_parsing_output = torch.stack(ms_outputs)
108
- ms_fused_parsing_output = ms_fused_parsing_output.mean(0)
109
- ms_fused_parsing_output = ms_fused_parsing_output.permute(1, 2, 0) # HWC
110
- parsing = torch.argmax(ms_fused_parsing_output, dim=2)
111
- parsing = parsing.data.cpu().numpy()
112
- ms_fused_parsing_output = ms_fused_parsing_output.data.cpu().numpy()
113
- return parsing, ms_fused_parsing_output
114
-
115
-
116
- def main():
117
- """Create the model and start the evaluation process."""
118
- args = get_arguments()
119
- multi_scales = [float(i) for i in args.multi_scales.split(',')]
120
- gpus = [int(i) for i in args.gpu.split(',')]
121
- assert len(gpus) == 1
122
- if not args.gpu == 'None':
123
- os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
124
-
125
- cudnn.benchmark = True
126
- cudnn.enabled = True
127
-
128
- h, w = map(int, args.input_size.split(','))
129
- input_size = [h, w]
130
-
131
- model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=None)
132
-
133
- IMAGE_MEAN = model.mean
134
- IMAGE_STD = model.std
135
- INPUT_SPACE = model.input_space
136
- print('image mean: {}'.format(IMAGE_MEAN))
137
- print('image std: {}'.format(IMAGE_STD))
138
- print('input space:{}'.format(INPUT_SPACE))
139
- if INPUT_SPACE == 'BGR':
140
- print('BGR Transformation')
141
- transform = transforms.Compose([
142
- transforms.ToTensor(),
143
- transforms.Normalize(mean=IMAGE_MEAN,
144
- std=IMAGE_STD),
145
-
146
- ])
147
- if INPUT_SPACE == 'RGB':
148
- print('RGB Transformation')
149
- transform = transforms.Compose([
150
- transforms.ToTensor(),
151
- BGR2RGB_transform(),
152
- transforms.Normalize(mean=IMAGE_MEAN,
153
- std=IMAGE_STD),
154
- ])
155
-
156
- # Data loader
157
- lip_test_dataset = LIPDataValSet(args.data_dir, 'val', crop_size=input_size, transform=transform, flip=args.flip)
158
- num_samples = len(lip_test_dataset)
159
- print('Totoal testing sample numbers: {}'.format(num_samples))
160
- testloader = data.DataLoader(lip_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True)
161
-
162
- # Load model weight
163
- state_dict = torch.load(args.model_restore)['state_dict']
164
- from collections import OrderedDict
165
- new_state_dict = OrderedDict()
166
- for k, v in state_dict.items():
167
- name = k[7:] # remove `module.`
168
- new_state_dict[name] = v
169
- model.load_state_dict(new_state_dict)
170
- model.cuda()
171
- model.eval()
172
-
173
- sp_results_dir = os.path.join(args.log_dir, 'sp_results')
174
- if not os.path.exists(sp_results_dir):
175
- os.makedirs(sp_results_dir)
176
-
177
- palette = get_palette(20)
178
- parsing_preds = []
179
- scales = np.zeros((num_samples, 2), dtype=np.float32)
180
- centers = np.zeros((num_samples, 2), dtype=np.int32)
181
- with torch.no_grad():
182
- for idx, batch in enumerate(tqdm(testloader)):
183
- image, meta = batch
184
- if (len(image.shape) > 4):
185
- image = image.squeeze()
186
- im_name = meta['name'][0]
187
- c = meta['center'].numpy()[0]
188
- s = meta['scale'].numpy()[0]
189
- w = meta['width'].numpy()[0]
190
- h = meta['height'].numpy()[0]
191
- scales[idx, :] = s
192
- centers[idx, :] = c
193
- parsing, logits = multi_scale_testing(model, image.cuda(), crop_size=input_size, flip=args.flip,
194
- multi_scales=multi_scales)
195
- if args.save_results:
196
- parsing_result = transform_parsing(parsing, c, s, w, h, input_size)
197
- parsing_result_path = os.path.join(sp_results_dir, im_name + '.png')
198
- output_im = PILImage.fromarray(np.asarray(parsing_result, dtype=np.uint8))
199
- output_im.putpalette(palette)
200
- output_im.save(parsing_result_path)
201
-
202
- parsing_preds.append(parsing)
203
- assert len(parsing_preds) == num_samples
204
- mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size)
205
- print(mIoU)
206
- return
207
-
208
-
209
- if __name__ == '__main__':
210
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/file_list.txt DELETED
The diff for this file is too large to render. See raw diff
 
model/SCHP/mhp_extension/.ipynb_checkpoints/demo-checkpoint.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
model/SCHP/mhp_extension/README.md DELETED
@@ -1,38 +0,0 @@
1
- # Self Correction for Human Parsing
2
-
3
- We propose a simple yet effective multiple human parsing framework by extending our self-correction network.
4
-
5
- Here we show an example usage jupyter notebook in [demo.ipynb](./demo.ipynb).
6
-
7
- ## Requirements
8
-
9
- Please see [INSTALL.md](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md) for further requirements.
10
-
11
- ## Citation
12
-
13
- Please cite our work if you find this repo useful in your research.
14
-
15
- ```latex
16
- @article{li2019self,
17
- title={Self-Correction for Human Parsing},
18
- author={Li, Peike and Xu, Yunqiu and Wei, Yunchao and Yang, Yi},
19
- journal={arXiv preprint arXiv:1910.09777},
20
- year={2019}
21
- }
22
- ```
23
-
24
- ## Visualization
25
-
26
- * Source Image.
27
- ![demo](./demo/demo.jpg)
28
- * Instance Human Mask.
29
- ![demo-lip](./demo/demo_instance_human_mask.png)
30
- * Global Human Parsing Result.
31
- ![demo-lip](./demo/demo_global_human_parsing.png)
32
- * Multiple Human Parsing Result.
33
- ![demo-lip](./demo/demo_multiple_human_parsing.png)
34
-
35
- ## Related
36
-
37
- Our implementation is based on the [Detectron2](https://github.com/facebookresearch/detectron2).
38
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/coco_style_annotation_creator/__pycache__/pycococreatortools.cpython-37.pyc DELETED
Binary file (3.6 kB)
 
model/SCHP/mhp_extension/coco_style_annotation_creator/human_to_coco.py DELETED
@@ -1,166 +0,0 @@
1
- import argparse
2
- import datetime
3
- import json
4
- import os
5
- from PIL import Image
6
- import numpy as np
7
-
8
- import pycococreatortools
9
-
10
-
11
- def get_arguments():
12
- parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
13
- parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
14
- parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
15
- help="path to save coco-style annotation json file")
16
- parser.add_argument("--use_val", type=bool, default=False,
17
- help="use train+val set for finetuning or not")
18
- parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
19
- help="train image path")
20
- parser.add_argument("--train_anno_dir", type=str,
21
- default='../data/instance-level_human_parsing/Training/Human_ids',
22
- help="train human mask path")
23
- parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
24
- help="val image path")
25
- parser.add_argument("--val_anno_dir", type=str,
26
- default='../data/instance-level_human_parsing/Validation/Human_ids',
27
- help="val human mask path")
28
- return parser.parse_args()
29
-
30
-
31
- def main(args):
32
- INFO = {
33
- "description": args.split_name + " Dataset",
34
- "url": "",
35
- "version": "",
36
- "year": 2019,
37
- "contributor": "xyq",
38
- "date_created": datetime.datetime.utcnow().isoformat(' ')
39
- }
40
-
41
- LICENSES = [
42
- {
43
- "id": 1,
44
- "name": "",
45
- "url": ""
46
- }
47
- ]
48
-
49
- CATEGORIES = [
50
- {
51
- 'id': 1,
52
- 'name': 'person',
53
- 'supercategory': 'person',
54
- },
55
- ]
56
-
57
- coco_output = {
58
- "info": INFO,
59
- "licenses": LICENSES,
60
- "categories": CATEGORIES,
61
- "images": [],
62
- "annotations": []
63
- }
64
-
65
- image_id = 1
66
- segmentation_id = 1
67
-
68
- for image_name in os.listdir(args.train_img_dir):
69
- image = Image.open(os.path.join(args.train_img_dir, image_name))
70
- image_info = pycococreatortools.create_image_info(
71
- image_id, image_name, image.size
72
- )
73
- coco_output["images"].append(image_info)
74
-
75
- human_mask_name = os.path.splitext(image_name)[0] + '.png'
76
- human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
77
- human_gt_labels = np.unique(human_mask)
78
-
79
- for i in range(1, len(human_gt_labels)):
80
- category_info = {'id': 1, 'is_crowd': 0}
81
- binary_mask = np.uint8(human_mask == i)
82
- annotation_info = pycococreatortools.create_annotation_info(
83
- segmentation_id, image_id, category_info, binary_mask,
84
- image.size, tolerance=10
85
- )
86
- if annotation_info is not None:
87
- coco_output["annotations"].append(annotation_info)
88
-
89
- segmentation_id += 1
90
- image_id += 1
91
-
92
- if not os.path.exists(args.json_save_dir):
93
- os.makedirs(args.json_save_dir)
94
- if not args.use_val:
95
- with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
96
- json.dump(coco_output, output_json_file)
97
- else:
98
- for image_name in os.listdir(args.val_img_dir):
99
- image = Image.open(os.path.join(args.val_img_dir, image_name))
100
- image_info = pycococreatortools.create_image_info(
101
- image_id, image_name, image.size
102
- )
103
- coco_output["images"].append(image_info)
104
-
105
- human_mask_name = os.path.splitext(image_name)[0] + '.png'
106
- human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
107
- human_gt_labels = np.unique(human_mask)
108
-
109
- for i in range(1, len(human_gt_labels)):
110
- category_info = {'id': 1, 'is_crowd': 0}
111
- binary_mask = np.uint8(human_mask == i)
112
- annotation_info = pycococreatortools.create_annotation_info(
113
- segmentation_id, image_id, category_info, binary_mask,
114
- image.size, tolerance=10
115
- )
116
- if annotation_info is not None:
117
- coco_output["annotations"].append(annotation_info)
118
-
119
- segmentation_id += 1
120
- image_id += 1
121
-
122
- with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
123
- json.dump(coco_output, output_json_file)
124
-
125
- coco_output_val = {
126
- "info": INFO,
127
- "licenses": LICENSES,
128
- "categories": CATEGORIES,
129
- "images": [],
130
- "annotations": []
131
- }
132
-
133
- image_id_val = 1
134
- segmentation_id_val = 1
135
-
136
- for image_name in os.listdir(args.val_img_dir):
137
- image = Image.open(os.path.join(args.val_img_dir, image_name))
138
- image_info = pycococreatortools.create_image_info(
139
- image_id_val, image_name, image.size
140
- )
141
- coco_output_val["images"].append(image_info)
142
-
143
- human_mask_name = os.path.splitext(image_name)[0] + '.png'
144
- human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
145
- human_gt_labels = np.unique(human_mask)
146
-
147
- for i in range(1, len(human_gt_labels)):
148
- category_info = {'id': 1, 'is_crowd': 0}
149
- binary_mask = np.uint8(human_mask == i)
150
- annotation_info = pycococreatortools.create_annotation_info(
151
- segmentation_id_val, image_id_val, category_info, binary_mask,
152
- image.size, tolerance=10
153
- )
154
- if annotation_info is not None:
155
- coco_output_val["annotations"].append(annotation_info)
156
-
157
- segmentation_id_val += 1
158
- image_id_val += 1
159
-
160
- with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
161
- json.dump(coco_output_val, output_json_file_val)
162
-
163
-
164
- if __name__ == "__main__":
165
- args = get_arguments()
166
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/coco_style_annotation_creator/pycococreatortools.py DELETED
@@ -1,114 +0,0 @@
1
- import re
2
- import datetime
3
- import numpy as np
4
- from itertools import groupby
5
- from skimage import measure
6
- from PIL import Image
7
- from pycocotools import mask
8
-
9
- convert = lambda text: int(text) if text.isdigit() else text.lower()
10
- natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
11
-
12
-
13
- def resize_binary_mask(array, new_size):
14
- image = Image.fromarray(array.astype(np.uint8) * 255)
15
- image = image.resize(new_size)
16
- return np.asarray(image).astype(np.bool_)
17
-
18
-
19
- def close_contour(contour):
20
- if not np.array_equal(contour[0], contour[-1]):
21
- contour = np.vstack((contour, contour[0]))
22
- return contour
23
-
24
-
25
- def binary_mask_to_rle(binary_mask):
26
- rle = {'counts': [], 'size': list(binary_mask.shape)}
27
- counts = rle.get('counts')
28
- for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
29
- if i == 0 and value == 1:
30
- counts.append(0)
31
- counts.append(len(list(elements)))
32
-
33
- return rle
34
-
35
-
36
- def binary_mask_to_polygon(binary_mask, tolerance=0):
37
- """Converts a binary mask to COCO polygon representation
38
- Args:
39
- binary_mask: a 2D binary numpy array where '1's represent the object
40
- tolerance: Maximum distance from original points of polygon to approximated
41
- polygonal chain. If tolerance is 0, the original coordinate array is returned.
42
- """
43
- polygons = []
44
- # pad mask to close contours of shapes which start and end at an edge
45
- padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
46
- contours = measure.find_contours(padded_binary_mask, 0.5)
47
- contours = np.subtract(contours, 1)
48
- for contour in contours:
49
- contour = close_contour(contour)
50
- contour = measure.approximate_polygon(contour, tolerance)
51
- if len(contour) < 3:
52
- continue
53
- contour = np.flip(contour, axis=1)
54
- segmentation = contour.ravel().tolist()
55
- # after padding and subtracting 1 we may get -0.5 points in our segmentation
56
- segmentation = [0 if i < 0 else i for i in segmentation]
57
- polygons.append(segmentation)
58
-
59
- return polygons
60
-
61
-
62
- def create_image_info(image_id, file_name, image_size,
63
- date_captured=datetime.datetime.utcnow().isoformat(' '),
64
- license_id=1, coco_url="", flickr_url=""):
65
- image_info = {
66
- "id": image_id,
67
- "file_name": file_name,
68
- "width": image_size[0],
69
- "height": image_size[1],
70
- "date_captured": date_captured,
71
- "license": license_id,
72
- "coco_url": coco_url,
73
- "flickr_url": flickr_url
74
- }
75
-
76
- return image_info
77
-
78
-
79
- def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
80
- image_size=None, tolerance=2, bounding_box=None):
81
- if image_size is not None:
82
- binary_mask = resize_binary_mask(binary_mask, image_size)
83
-
84
- binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
85
-
86
- area = mask.area(binary_mask_encoded)
87
- if area < 1:
88
- return None
89
-
90
- if bounding_box is None:
91
- bounding_box = mask.toBbox(binary_mask_encoded)
92
-
93
- if category_info["is_crowd"]:
94
- is_crowd = 1
95
- segmentation = binary_mask_to_rle(binary_mask)
96
- else:
97
- is_crowd = 0
98
- segmentation = binary_mask_to_polygon(binary_mask, tolerance)
99
- if not segmentation:
100
- return None
101
-
102
- annotation_info = {
103
- "id": annotation_id,
104
- "image_id": image_id,
105
- "category_id": category_info["id"],
106
- "iscrowd": is_crowd,
107
- "area": area.tolist(),
108
- "bbox": bounding_box.tolist(),
109
- "segmentation": segmentation,
110
- "width": binary_mask.shape[1],
111
- "height": binary_mask.shape[0],
112
- }
113
-
114
- return annotation_info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py DELETED
@@ -1,74 +0,0 @@
1
- import argparse
2
- import datetime
3
- import json
4
- import os
5
- from PIL import Image
6
-
7
- import pycococreatortools
8
-
9
-
10
- def get_arguments():
11
- parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
12
- parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
13
- parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
14
- help="path to save coco-style annotation json file")
15
- parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
16
- help="test image path")
17
- return parser.parse_args()
18
-
19
- args = get_arguments()
20
-
21
- INFO = {
22
- "description": args.dataset + "Dataset",
23
- "url": "",
24
- "version": "",
25
- "year": 2020,
26
- "contributor": "yunqiuxu",
27
- "date_created": datetime.datetime.utcnow().isoformat(' ')
28
- }
29
-
30
- LICENSES = [
31
- {
32
- "id": 1,
33
- "name": "",
34
- "url": ""
35
- }
36
- ]
37
-
38
- CATEGORIES = [
39
- {
40
- 'id': 1,
41
- 'name': 'person',
42
- 'supercategory': 'person',
43
- },
44
- ]
45
-
46
-
47
- def main(args):
48
- coco_output = {
49
- "info": INFO,
50
- "licenses": LICENSES,
51
- "categories": CATEGORIES,
52
- "images": [],
53
- "annotations": []
54
- }
55
-
56
- image_id = 1
57
-
58
- for image_name in os.listdir(args.test_img_dir):
59
- image = Image.open(os.path.join(args.test_img_dir, image_name))
60
- image_info = pycococreatortools.create_image_info(
61
- image_id, image_name, image.size
62
- )
63
- coco_output["images"].append(image_info)
64
- image_id += 1
65
-
66
- if not os.path.exists(os.path.join(args.json_save_dir)):
67
- os.mkdir(os.path.join(args.json_save_dir))
68
-
69
- with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
70
- json.dump(coco_output, output_json_file)
71
-
72
-
73
- if __name__ == "__main__":
74
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/data/DemoDataset/global_pic/demo.jpg DELETED
Binary file (139 kB)
 
model/SCHP/mhp_extension/demo.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
model/SCHP/mhp_extension/demo/demo.jpg DELETED
Binary file (139 kB)
 
model/SCHP/mhp_extension/demo/demo_global_human_parsing.png DELETED
Binary file (16.8 kB)
 
model/SCHP/mhp_extension/demo/demo_instance_human_mask.png DELETED
Binary file (15.5 kB)
 
model/SCHP/mhp_extension/demo/demo_multiple_human_parsing.png DELETED
Binary file (17.1 kB)
 
model/SCHP/mhp_extension/detectron2/.circleci/config.yml DELETED
@@ -1,179 +0,0 @@
1
- # Python CircleCI 2.0 configuration file
2
- #
3
- # Check https://circleci.com/docs/2.0/language-python/ for more details
4
- #
5
- version: 2
6
-
7
- # -------------------------------------------------------------------------------------
8
- # Environments to run the jobs in
9
- # -------------------------------------------------------------------------------------
10
- cpu: &cpu
11
- docker:
12
- - image: circleci/python:3.6.8-stretch
13
- resource_class: medium
14
-
15
- gpu: &gpu
16
- machine:
17
- image: ubuntu-1604:201903-01
18
- docker_layer_caching: true
19
- resource_class: gpu.small
20
-
21
- # -------------------------------------------------------------------------------------
22
- # Re-usable commands
23
- # -------------------------------------------------------------------------------------
24
- install_python: &install_python
25
- - run:
26
- name: Install Python
27
- working_directory: ~/
28
- command: |
29
- pyenv install 3.6.1
30
- pyenv global 3.6.1
31
-
32
- setup_venv: &setup_venv
33
- - run:
34
- name: Setup Virtual Env
35
- working_directory: ~/
36
- command: |
37
- python -m venv ~/venv
38
- echo ". ~/venv/bin/activate" >> $BASH_ENV
39
- . ~/venv/bin/activate
40
- python --version
41
- which python
42
- which pip
43
- pip install --upgrade pip
44
-
45
- install_dep: &install_dep
46
- - run:
47
- name: Install Dependencies
48
- command: |
49
- pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
50
- pip install --progress-bar off cython opencv-python
51
- pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
52
- pip install --progress-bar off torch torchvision
53
-
54
- install_detectron2: &install_detectron2
55
- - run:
56
- name: Install Detectron2
57
- command: |
58
- gcc --version
59
- pip install -U --progress-bar off -e .[dev]
60
- python -m detectron2.utils.collect_env
61
-
62
- install_nvidia_driver: &install_nvidia_driver
63
- - run:
64
- name: Install nvidia driver
65
- working_directory: ~/
66
- command: |
67
- wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
68
- sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
69
- nvidia-smi
70
-
71
- run_unittests: &run_unittests
72
- - run:
73
- name: Run Unit Tests
74
- command: |
75
- python -m unittest discover -v -s tests
76
-
77
- # -------------------------------------------------------------------------------------
78
- # Jobs to run
79
- # -------------------------------------------------------------------------------------
80
- jobs:
81
- cpu_tests:
82
- <<: *cpu
83
-
84
- working_directory: ~/detectron2
85
-
86
- steps:
87
- - checkout
88
- - <<: *setup_venv
89
-
90
- # Cache the venv directory that contains dependencies
91
- - restore_cache:
92
- keys:
93
- - cache-key-{{ .Branch }}-ID-20200425
94
-
95
- - <<: *install_dep
96
-
97
- - save_cache:
98
- paths:
99
- - ~/venv
100
- key: cache-key-{{ .Branch }}-ID-20200425
101
-
102
- - <<: *install_detectron2
103
-
104
- - run:
105
- name: isort
106
- command: |
107
- isort -c -sp .
108
- - run:
109
- name: black
110
- command: |
111
- black --check -l 100 .
112
- - run:
113
- name: flake8
114
- command: |
115
- flake8 .
116
-
117
- - <<: *run_unittests
118
-
119
- gpu_tests:
120
- <<: *gpu
121
-
122
- working_directory: ~/detectron2
123
-
124
- steps:
125
- - checkout
126
- - <<: *install_nvidia_driver
127
-
128
- - run:
129
- name: Install nvidia-docker
130
- working_directory: ~/
131
- command: |
132
- curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
133
- distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
134
- curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
135
- sudo tee /etc/apt/sources.list.d/nvidia-docker.list
136
- sudo apt-get update && sudo apt-get install -y nvidia-docker2
137
- # reload the docker daemon configuration
138
- sudo pkill -SIGHUP dockerd
139
-
140
- - run:
141
- name: Launch docker
142
- working_directory: ~/detectron2/docker
143
- command: |
144
- nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
145
- nvidia-docker run -itd --name d2 detectron2:v0
146
- docker exec -it d2 nvidia-smi
147
-
148
- - run:
149
- name: Build Detectron2
150
- command: |
151
- docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
152
- docker cp ~/detectron2 d2:/detectron2
153
- # This will build d2 for the target GPU arch only
154
- docker exec -it d2 pip install -e /detectron2
155
- docker exec -it d2 python3 -m detectron2.utils.collect_env
156
- docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
157
-
158
- - run:
159
- name: Run Unit Tests
160
- command: |
161
- docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
162
-
163
- workflows:
164
- version: 2
165
- regular_test:
166
- jobs:
167
- - cpu_tests
168
- - gpu_tests
169
-
170
- #nightly_test:
171
- #jobs:
172
- #- gpu_tests
173
- #triggers:
174
- #- schedule:
175
- #cron: "0 0 * * *"
176
- #filters:
177
- #branches:
178
- #only:
179
- #- master
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.clang-format DELETED
@@ -1,85 +0,0 @@
1
- AccessModifierOffset: -1
2
- AlignAfterOpenBracket: AlwaysBreak
3
- AlignConsecutiveAssignments: false
4
- AlignConsecutiveDeclarations: false
5
- AlignEscapedNewlinesLeft: true
6
- AlignOperands: false
7
- AlignTrailingComments: false
8
- AllowAllParametersOfDeclarationOnNextLine: false
9
- AllowShortBlocksOnASingleLine: false
10
- AllowShortCaseLabelsOnASingleLine: false
11
- AllowShortFunctionsOnASingleLine: Empty
12
- AllowShortIfStatementsOnASingleLine: false
13
- AllowShortLoopsOnASingleLine: false
14
- AlwaysBreakAfterReturnType: None
15
- AlwaysBreakBeforeMultilineStrings: true
16
- AlwaysBreakTemplateDeclarations: true
17
- BinPackArguments: false
18
- BinPackParameters: false
19
- BraceWrapping:
20
- AfterClass: false
21
- AfterControlStatement: false
22
- AfterEnum: false
23
- AfterFunction: false
24
- AfterNamespace: false
25
- AfterObjCDeclaration: false
26
- AfterStruct: false
27
- AfterUnion: false
28
- BeforeCatch: false
29
- BeforeElse: false
30
- IndentBraces: false
31
- BreakBeforeBinaryOperators: None
32
- BreakBeforeBraces: Attach
33
- BreakBeforeTernaryOperators: true
34
- BreakConstructorInitializersBeforeComma: false
35
- BreakAfterJavaFieldAnnotations: false
36
- BreakStringLiterals: false
37
- ColumnLimit: 80
38
- CommentPragmas: '^ IWYU pragma:'
39
- ConstructorInitializerAllOnOneLineOrOnePerLine: true
40
- ConstructorInitializerIndentWidth: 4
41
- ContinuationIndentWidth: 4
42
- Cpp11BracedListStyle: true
43
- DerivePointerAlignment: false
44
- DisableFormat: false
45
- ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
46
- IncludeCategories:
47
- - Regex: '^<.*\.h(pp)?>'
48
- Priority: 1
49
- - Regex: '^<.*'
50
- Priority: 2
51
- - Regex: '.*'
52
- Priority: 3
53
- IndentCaseLabels: true
54
- IndentWidth: 2
55
- IndentWrappedFunctionNames: false
56
- KeepEmptyLinesAtTheStartOfBlocks: false
57
- MacroBlockBegin: ''
58
- MacroBlockEnd: ''
59
- MaxEmptyLinesToKeep: 1
60
- NamespaceIndentation: None
61
- ObjCBlockIndentWidth: 2
62
- ObjCSpaceAfterProperty: false
63
- ObjCSpaceBeforeProtocolList: false
64
- PenaltyBreakBeforeFirstCallParameter: 1
65
- PenaltyBreakComment: 300
66
- PenaltyBreakFirstLessLess: 120
67
- PenaltyBreakString: 1000
68
- PenaltyExcessCharacter: 1000000
69
- PenaltyReturnTypeOnItsOwnLine: 200
70
- PointerAlignment: Left
71
- ReflowComments: true
72
- SortIncludes: true
73
- SpaceAfterCStyleCast: false
74
- SpaceBeforeAssignmentOperators: true
75
- SpaceBeforeParens: ControlStatements
76
- SpaceInEmptyParentheses: false
77
- SpacesBeforeTrailingComments: 1
78
- SpacesInAngles: false
79
- SpacesInContainerLiterals: true
80
- SpacesInCStyleCastParentheses: false
81
- SpacesInParentheses: false
82
- SpacesInSquareBrackets: false
83
- Standard: Cpp11
84
- TabWidth: 8
85
- UseTab: Never
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.flake8 DELETED
@@ -1,9 +0,0 @@
1
- # This is an example .flake8 config, used when developing *Black* itself.
2
- # Keep in sync with setup.cfg which is used for source packages.
3
-
4
- [flake8]
5
- ignore = W503, E203, E221, C901, C408, E741
6
- max-line-length = 100
7
- max-complexity = 18
8
- select = B,C,E,F,W,T4,B9
9
- exclude = build,__init__.py
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md DELETED
@@ -1,5 +0,0 @@
1
- # Code of Conduct
2
-
3
- Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
4
- Please read the [full text](https://code.fb.com/codeofconduct/)
5
- so that you can understand what actions will and will not be tolerated.
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/CONTRIBUTING.md DELETED
@@ -1,49 +0,0 @@
1
- # Contributing to detectron2
2
-
3
- ## Issues
4
- We use GitHub issues to track public bugs and questions.
5
- Please make sure to follow one of the
6
- [issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
7
- when reporting any issues.
8
-
9
- Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
10
- disclosure of security bugs. In those cases, please go through the process
11
- outlined on that page and do not file a public issue.
12
-
13
- ## Pull Requests
14
- We actively welcome your pull requests.
15
-
16
- However, if you're adding any significant features (e.g. > 50 lines), please
17
- make sure to have a corresponding issue to discuss your motivation and proposals,
18
- before sending a PR. We do not always accept new features, and we take the following
19
- factors into consideration:
20
-
21
- 1. Whether the same feature can be achieved without modifying detectron2.
22
- Detectron2 is designed so that you can implement many extensions from the outside, e.g.
23
- those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
24
- If some part is not as extensible, you can also bring up the issue to make it more extensible.
25
- 2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
26
- 3. Whether the proposed solution has a good design / interface.
27
- 4. Whether the proposed solution adds extra mental/practical overhead to users who don't
28
- need such feature.
29
- 5. Whether the proposed solution breaks existing APIs.
30
-
31
- When sending a PR, please do:
32
-
33
- 1. If a PR contains multiple orthogonal changes, split it to several PRs.
34
- 2. If you've added code that should be tested, add tests.
35
- 3. For PRs that need experiments (e.g. adding a new model or new methods),
36
- you don't need to update model zoo, but do provide experiment results in the description of the PR.
37
- 4. If APIs are changed, update the documentation.
38
- 5. Make sure your code lints with `./dev/linter.sh`.
39
-
40
-
41
- ## Contributor License Agreement ("CLA")
42
- In order to accept your pull request, we need you to submit a CLA. You only need
43
- to do this once to work on any of Facebook's open source projects.
44
-
45
- Complete your CLA here: <https://code.facebook.com/cla>
46
-
47
- ## License
48
- By contributing to detectron2, you agree that your contributions will be licensed
49
- under the LICENSE file in the root directory of this source tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg DELETED
model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md DELETED
@@ -1,5 +0,0 @@
1
-
2
- Please select an issue template from
3
- https://github.com/facebookresearch/detectron2/issues/new/choose .
4
-
5
- Otherwise your issue will be closed.
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md DELETED
@@ -1,36 +0,0 @@
1
- ---
2
- name: "🐛 Bugs"
3
- about: Report bugs in detectron2
4
- title: Please read & provide the following
5
-
6
- ---
7
-
8
- ## Instructions To Reproduce the 🐛 Bug:
9
-
10
- 1. what changes you made (`git diff`) or what code you wrote
11
- ```
12
- <put diff or code here>
13
- ```
14
- 2. what exact command you run:
15
- 3. what you observed (including __full logs__):
16
- ```
17
- <put logs here>
18
- ```
19
- 4. please simplify the steps as much as possible so they do not require additional resources to
20
- run, such as a private dataset.
21
-
22
- ## Expected behavior:
23
-
24
- If there are no obvious error in "what you observed" provided above,
25
- please tell us the expected behavior.
26
-
27
- ## Environment:
28
-
29
- Provide your environment information using the following command:
30
- ```
31
- wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
32
- ```
33
-
34
- If your issue looks like an installation issue / environment issue,
35
- please first try to solve it yourself with the instructions in
36
- https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml DELETED
@@ -1,9 +0,0 @@
1
- # require an issue template to be chosen
2
- blank_issues_enabled: false
3
-
4
- # Unexpected behaviors & bugs are split to two templates.
5
- # When they are one template, users think "it's not a bug" and don't choose the template.
6
- #
7
- # But the file name is still "unexpected-problems-bugs.md" so that old references
8
- # to this issue template still works.
9
- # It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md DELETED
@@ -1,31 +0,0 @@
1
- ---
2
- name: "\U0001F680Feature Request"
3
- about: Submit a proposal/request for a new detectron2 feature
4
-
5
- ---
6
-
7
- ## 🚀 Feature
8
- A clear and concise description of the feature proposal.
9
-
10
-
11
- ## Motivation & Examples
12
-
13
- Tell us why the feature is useful.
14
-
15
- Describe what the feature would look like, if it is implemented.
16
- Best demonstrated using **code examples** in addition to words.
17
-
18
- ## Note
19
-
20
- We only consider adding new features if they are relevant to many users.
21
-
22
- If you request implementation of research papers --
23
- we only consider papers that have enough significance and prevalance in the object detection field.
24
-
25
- We do not take requests for most projects in the `projects/` directory,
26
- because they are research code release that is mainly for other researchers to reproduce results.
27
-
28
- Instead of adding features inside detectron2,
29
- you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
30
- The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
31
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/questions-help-support.md DELETED
@@ -1,26 +0,0 @@
1
- ---
2
- name: "❓How to do something?"
3
- about: How to do something using detectron2? What does an API do?
4
-
5
- ---
6
-
7
- ## ❓ How to do something using detectron2
8
-
9
- Describe what you want to do, including:
10
- 1. what inputs you will provide, if any:
11
- 2. what outputs you are expecting:
12
-
13
- ## ❓ What does an API do and how to use it?
14
- Please link to which API or documentation you're asking about from
15
- https://detectron2.readthedocs.io/
16
-
17
-
18
- NOTE:
19
-
20
- 1. Only general answers are provided.
21
- If you want to ask about "why X did not work", please use the
22
- [Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
23
-
24
- 2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
25
-
26
- 3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/unexpected-problems-bugs.md DELETED
@@ -1,45 +0,0 @@
1
- ---
2
- name: "Unexpected behaviors"
3
- about: Run into unexpected behaviors when using detectron2
4
- title: Please read & provide the following
5
-
6
- ---
7
-
8
- If you do not know the root cause of the problem, and wish someone to help you, please
9
- post according to this template:
10
-
11
- ## Instructions To Reproduce the Issue:
12
-
13
- 1. what changes you made (`git diff`) or what code you wrote
14
- ```
15
- <put diff or code here>
16
- ```
17
- 2. what exact command you run:
18
- 3. what you observed (including __full logs__):
19
- ```
20
- <put logs here>
21
- ```
22
- 4. please simplify the steps as much as possible so they do not require additional resources to
23
- run, such as a private dataset.
24
-
25
- ## Expected behavior:
26
-
27
- If there are no obvious error in "what you observed" provided above,
28
- please tell us the expected behavior.
29
-
30
- If you expect the model to converge / work better, note that we do not give suggestions
31
- on how to train a new model.
32
- Only in one of the two conditions we will help with it:
33
- (1) You're unable to reproduce the results in detectron2 model zoo.
34
- (2) It indicates a detectron2 bug.
35
-
36
- ## Environment:
37
-
38
- Provide your environment information using the following command:
39
- ```
40
- wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
41
- ```
42
-
43
- If your issue looks like an installation issue / environment issue,
44
- please first try to solve it yourself with the instructions in
45
- https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.github/pull_request_template.md DELETED
@@ -1,9 +0,0 @@
1
- Thanks for your contribution!
2
-
3
- If you're sending a large PR (e.g., >50 lines),
4
- please open an issue first about the feature / bug, and indicate how you want to contribute.
5
-
6
- Before submitting a PR, please run `dev/linter.sh` to lint the code.
7
-
8
- See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
9
- about how we handle PRs.
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/.gitignore DELETED
@@ -1,46 +0,0 @@
1
- # output dir
2
- output
3
- instant_test_output
4
- inference_test_output
5
-
6
-
7
- *.jpg
8
- *.png
9
- *.txt
10
- *.json
11
- *.diff
12
-
13
- # compilation and distribution
14
- __pycache__
15
- _ext
16
- *.pyc
17
- *.so
18
- detectron2.egg-info/
19
- build/
20
- dist/
21
- wheels/
22
-
23
- # pytorch/python/numpy formats
24
- *.pth
25
- *.pkl
26
- *.npy
27
-
28
- # ipython/jupyter notebooks
29
- *.ipynb
30
- **/.ipynb_checkpoints/
31
-
32
- # Editor temporaries
33
- *.swn
34
- *.swo
35
- *.swp
36
- *~
37
-
38
- # editor settings
39
- .idea
40
- .vscode
41
-
42
- # project dirs
43
- /detectron2/model_zoo/configs
44
- /datasets
45
- /projects/*/datasets
46
- /models
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/GETTING_STARTED.md DELETED
@@ -1,79 +0,0 @@
1
- ## Getting Started with Detectron2
2
-
3
- This document provides a brief intro of the usage of builtin command-line tools in detectron2.
4
-
5
- For a tutorial that involves actual coding with the API,
6
- see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
7
- which covers how to run inference with an
8
- existing model, and how to train a builtin model on a custom dataset.
9
-
10
- For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
11
-
12
-
13
- ### Inference Demo with Pre-trained Models
14
-
15
- 1. Pick a model and its config file from
16
- [model zoo](MODEL_ZOO.md),
17
- for example, `mask_rcnn_R_50_FPN_3x.yaml`.
18
- 2. We provide `demo.py` that is able to run builtin standard models. Run it with:
19
- ```
20
- cd demo/
21
- python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
22
- --input input1.jpg input2.jpg \
23
- [--other-options]
24
- --opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
25
- ```
26
- The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
27
- This command will run the inference and show visualizations in an OpenCV window.
28
-
29
- For details of the command line arguments, see `demo.py -h` or look at its source code
30
- to understand its behavior. Some common arguments are:
31
- * To run __on your webcam__, replace `--input files` with `--webcam`.
32
- * To run __on a video__, replace `--input files` with `--video-input video.mp4`.
33
- * To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
34
- * To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
35
-
36
-
37
- ### Training & Evaluation in Command Line
38
-
39
- We provide a script in "tools/{,plain_}train_net.py", that is made to train
40
- all the configs provided in detectron2.
41
- You may want to use it as a reference to write your own training script.
42
-
43
- To train a model with "train_net.py", first
44
- setup the corresponding datasets following
45
- [datasets/README.md](./datasets/README.md),
46
- then run:
47
- ```
48
- cd tools/
49
- ./train_net.py --num-gpus 8 \
50
- --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
51
- ```
52
-
53
- The configs are made for 8-GPU training.
54
- To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
55
- ```
56
- ./train_net.py \
57
- --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
58
- --num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
59
- ```
60
-
61
- For most models, CPU training is not supported.
62
-
63
- To evaluate a model's performance, use
64
- ```
65
- ./train_net.py \
66
- --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
67
- --eval-only MODEL.WEIGHTS /path/to/checkpoint_file
68
- ```
69
- For more options, see `./train_net.py -h`.
70
-
71
- ### Use Detectron2 APIs in Your Code
72
-
73
- See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
74
- to learn how to use detectron2 APIs to:
75
- 1. run inference with an existing model
76
- 2. train a builtin model on a custom dataset
77
-
78
- See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
79
- for more ways to build your project on detectron2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/INSTALL.md DELETED
@@ -1,184 +0,0 @@
1
- ## Installation
2
-
3
- Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
4
- has step-by-step instructions that install detectron2.
5
- The [Dockerfile](docker)
6
- also installs detectron2 with a few simple commands.
7
-
8
- ### Requirements
9
- - Linux or macOS with Python ≥ 3.6
10
- - PyTorch ≥ 1.4
11
- - [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
12
- You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
13
- - OpenCV, optional, needed by demo and visualization
14
- - pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
15
-
16
-
17
- ### Build Detectron2 from Source
18
-
19
- gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
20
- After having them, run:
21
- ```
22
- python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
23
- # (add --user if you don't have permission)
24
-
25
- # Or, to install it from a local clone:
26
- git clone https://github.com/facebookresearch/detectron2.git
27
- python -m pip install -e detectron2
28
-
29
- # Or if you are on macOS
30
- # CC=clang CXX=clang++ python -m pip install -e .
31
- ```
32
-
33
- To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
34
- old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
35
-
36
- ### Install Pre-Built Detectron2 (Linux only)
37
- ```
38
- # for CUDA 10.1:
39
- python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
40
- ```
41
- You can replace cu101 with "cu{100,92}" or "cpu".
42
-
43
- Note that:
44
- 1. Such installation has to be used with certain version of official PyTorch release.
45
- See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
46
- It will not work with a different version of PyTorch or a non-official build of PyTorch.
47
- 2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
48
- compatible with the master branch of a research project that uses detectron2 (e.g. those in
49
- [projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
50
-
51
- ### Common Installation Issues
52
-
53
- If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
54
-
55
- Click each issue for its solutions:
56
-
57
- <details>
58
- <summary>
59
- Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
60
- </summary>
61
- <br/>
62
-
63
- This usually happens when detectron2 or torchvision is not
64
- compiled with the version of PyTorch you're running.
65
-
66
- Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
67
- If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
68
- following [pytorch.org](http://pytorch.org). So the versions will match.
69
-
70
- If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
71
- to see the corresponding pytorch version required for each pre-built detectron2.
72
-
73
- If the error comes from detectron2 or torchvision that you built manually from source,
74
- remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
75
-
76
- If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
77
- in your issue.
78
- </details>
79
-
80
- <details>
81
- <summary>
82
- Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
83
- </summary>
84
- <br/>
85
- Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
86
-
87
- This often happens with old anaconda.
88
- Try `conda update libgcc`. Then rebuild detectron2.
89
-
90
- The fundamental solution is to run the code with proper C++ runtime.
91
- One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
92
-
93
- </details>
94
-
95
- <details>
96
- <summary>
97
- "Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
98
- </summary>
99
- <br/>
100
- CUDA is not found when building detectron2.
101
- You should make sure
102
-
103
- ```
104
- python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
105
- ```
106
-
107
- print valid outputs at the time you build detectron2.
108
-
109
- Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
110
- </details>
111
-
112
- <details>
113
- <summary>
114
- "invalid device function" or "no kernel image is available for execution".
115
- </summary>
116
- <br/>
117
- Two possibilities:
118
-
119
- * You build detectron2 with one version of CUDA but run it with a different version.
120
-
121
- To check whether it is the case,
122
- use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
123
- In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
124
- to contain cuda libraries of the same version.
125
-
126
- When they are inconsistent,
127
- you need to either install a different build of PyTorch (or build by yourself)
128
- to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
129
-
130
- * Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
131
-
132
- The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
133
- `python -m detectron2.utils.collect_env`.
134
-
135
- The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
136
- during compilation. This means the compiled code may not work on a different GPU model.
137
- To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
138
-
139
- For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
140
- Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
141
- the correct compute compatibility number for your device.
142
-
143
- </details>
144
-
145
- <details>
146
- <summary>
147
- Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
148
- </summary>
149
- <br/>
150
- The version of NVCC you use to build detectron2 or torchvision does
151
- not match the version of CUDA you are running with.
152
- This often happens when using anaconda's CUDA runtime.
153
-
154
- Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
155
- In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
156
- to contain cuda libraries of the same version.
157
-
158
- When they are inconsistent,
159
- you need to either install a different build of PyTorch (or build by yourself)
160
- to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
161
- </details>
162
-
163
-
164
- <details>
165
- <summary>
166
- "ImportError: cannot import name '_C'".
167
- </summary>
168
- <br/>
169
- Please build and install detectron2 following the instructions above.
170
-
171
- If you are running code from detectron2's root directory, `cd` to a different one.
172
- Otherwise you may not import the code that you installed.
173
- </details>
174
-
175
- <details>
176
- <summary>
177
- ONNX conversion segfault after some "TraceWarning".
178
- </summary>
179
- <br/>
180
- The ONNX package is compiled with too old compiler.
181
-
182
- Please build and install ONNX from its source code using a compiler
183
- whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
184
- </details>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2019 - present, Facebook, Inc
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/MODEL_ZOO.md DELETED
@@ -1,903 +0,0 @@
1
- # Detectron2 Model Zoo and Baselines
2
-
3
- ## Introduction
4
-
5
- This file documents a large collection of baselines trained
6
- with detectron2 in Sep-Oct, 2019.
7
- All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
8
- servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
9
- You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
10
-
11
- In addition to these official baseline models, you can find more models in [projects/](projects/).
12
-
13
- #### How to Read the Tables
14
- * The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
15
- and 8 GPUs will reproduce the model.
16
- * Training speed is averaged across the entire training.
17
- We keep updating the speed with latest version of detectron2/pytorch/etc.,
18
- so they might be different from the `metrics` file.
19
- Training speed for multi-machine jobs is not provided.
20
- * Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
21
- with batch size 1 in detectron2 directly.
22
- Measuring it with your own code will likely introduce other overhead.
23
- Actual deployment in production should in general be faster than the given inference
24
- speed due to more optimizations.
25
- * The *model id* column is provided for ease of reference.
26
- To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
27
- * Training curves and other statistics can be found in `metrics` for each model.
28
-
29
- #### Common Settings for COCO Models
30
- * All COCO models were trained on `train2017` and evaluated on `val2017`.
31
- * The default settings are __not directly comparable__ with Detectron's standard settings.
32
- For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
33
-
34
- To make fair comparisons with Detectron's settings, see
35
- [Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
36
- and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
37
- for speed comparison.
38
- * For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
39
- * __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
40
- respectively. It obtains the best
41
- speed/accuracy tradeoff, but the other two are still useful for research.
42
- * __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
43
- * __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
44
- for mask and box prediction, respectively.
45
- This is used by the Deformable ConvNet paper.
46
- * Most models are trained with the 3x schedule (~37 COCO epochs).
47
- Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
48
- training schedule for comparison when doing quick research iteration.
49
-
50
- #### ImageNet Pretrained Models
51
-
52
- We provide backbone models pretrained on ImageNet-1k dataset.
53
- These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
54
- * [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
55
- * [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
56
- * [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
57
-
58
- Pretrained models in Detectron's format can still be used. For example:
59
- * [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
60
- ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
61
- * [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
62
- ResNet-50 with Group Normalization.
63
- * [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
64
- ResNet-101 with Group Normalization.
65
-
66
- Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
67
-
68
- #### License
69
-
70
- All models available for download through this document are licensed under the
71
- [Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
72
-
73
- ### COCO Object Detection Baselines
74
-
75
- #### Faster R-CNN:
76
- <!--
77
- (fb only) To update the table in vim:
78
- 1. Remove the old table: d}
79
- 2. Copy the below command to the place of the table
80
- 3. :.!bash
81
-
82
- ./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
83
- -->
84
-
85
-
86
- <table><tbody>
87
- <!-- START TABLE -->
88
- <!-- TABLE HEADER -->
89
- <th valign="bottom">Name</th>
90
- <th valign="bottom">lr<br/>sched</th>
91
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
92
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
93
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
94
- <th valign="bottom">box<br/>AP</th>
95
- <th valign="bottom">model id</th>
96
- <th valign="bottom">download</th>
97
- <!-- TABLE BODY -->
98
- <!-- ROW: faster_rcnn_R_50_C4_1x -->
99
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
100
- <td align="center">1x</td>
101
- <td align="center">0.551</td>
102
- <td align="center">0.102</td>
103
- <td align="center">4.8</td>
104
- <td align="center">35.7</td>
105
- <td align="center">137257644</td>
106
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
107
- </tr>
108
- <!-- ROW: faster_rcnn_R_50_DC5_1x -->
109
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
110
- <td align="center">1x</td>
111
- <td align="center">0.380</td>
112
- <td align="center">0.068</td>
113
- <td align="center">5.0</td>
114
- <td align="center">37.3</td>
115
- <td align="center">137847829</td>
116
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
117
- </tr>
118
- <!-- ROW: faster_rcnn_R_50_FPN_1x -->
119
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
120
- <td align="center">1x</td>
121
- <td align="center">0.210</td>
122
- <td align="center">0.038</td>
123
- <td align="center">3.0</td>
124
- <td align="center">37.9</td>
125
- <td align="center">137257794</td>
126
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
127
- </tr>
128
- <!-- ROW: faster_rcnn_R_50_C4_3x -->
129
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
130
- <td align="center">3x</td>
131
- <td align="center">0.543</td>
132
- <td align="center">0.104</td>
133
- <td align="center">4.8</td>
134
- <td align="center">38.4</td>
135
- <td align="center">137849393</td>
136
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
137
- </tr>
138
- <!-- ROW: faster_rcnn_R_50_DC5_3x -->
139
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
140
- <td align="center">3x</td>
141
- <td align="center">0.378</td>
142
- <td align="center">0.070</td>
143
- <td align="center">5.0</td>
144
- <td align="center">39.0</td>
145
- <td align="center">137849425</td>
146
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
147
- </tr>
148
- <!-- ROW: faster_rcnn_R_50_FPN_3x -->
149
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
150
- <td align="center">3x</td>
151
- <td align="center">0.209</td>
152
- <td align="center">0.038</td>
153
- <td align="center">3.0</td>
154
- <td align="center">40.2</td>
155
- <td align="center">137849458</td>
156
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
157
- </tr>
158
- <!-- ROW: faster_rcnn_R_101_C4_3x -->
159
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
160
- <td align="center">3x</td>
161
- <td align="center">0.619</td>
162
- <td align="center">0.139</td>
163
- <td align="center">5.9</td>
164
- <td align="center">41.1</td>
165
- <td align="center">138204752</td>
166
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
167
- </tr>
168
- <!-- ROW: faster_rcnn_R_101_DC5_3x -->
169
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
170
- <td align="center">3x</td>
171
- <td align="center">0.452</td>
172
- <td align="center">0.086</td>
173
- <td align="center">6.1</td>
174
- <td align="center">40.6</td>
175
- <td align="center">138204841</td>
176
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
177
- </tr>
178
- <!-- ROW: faster_rcnn_R_101_FPN_3x -->
179
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
180
- <td align="center">3x</td>
181
- <td align="center">0.286</td>
182
- <td align="center">0.051</td>
183
- <td align="center">4.1</td>
184
- <td align="center">42.0</td>
185
- <td align="center">137851257</td>
186
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
187
- </tr>
188
- <!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
189
- <tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
190
- <td align="center">3x</td>
191
- <td align="center">0.638</td>
192
- <td align="center">0.098</td>
193
- <td align="center">6.7</td>
194
- <td align="center">43.0</td>
195
- <td align="center">139173657</td>
196
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
197
- </tr>
198
- </tbody></table>
199
-
200
- #### RetinaNet:
201
- <!--
202
- ./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
203
- -->
204
-
205
-
206
- <table><tbody>
207
- <!-- START TABLE -->
208
- <!-- TABLE HEADER -->
209
- <th valign="bottom">Name</th>
210
- <th valign="bottom">lr<br/>sched</th>
211
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
212
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
213
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
214
- <th valign="bottom">box<br/>AP</th>
215
- <th valign="bottom">model id</th>
216
- <th valign="bottom">download</th>
217
- <!-- TABLE BODY -->
218
- <!-- ROW: retinanet_R_50_FPN_1x -->
219
- <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
220
- <td align="center">1x</td>
221
- <td align="center">0.200</td>
222
- <td align="center">0.055</td>
223
- <td align="center">3.9</td>
224
- <td align="center">36.5</td>
225
- <td align="center">137593951</td>
226
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/model_final_b796dc.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/metrics.json">metrics</a></td>
227
- </tr>
228
- <!-- ROW: retinanet_R_50_FPN_3x -->
229
- <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
230
- <td align="center">3x</td>
231
- <td align="center">0.201</td>
232
- <td align="center">0.055</td>
233
- <td align="center">3.9</td>
234
- <td align="center">37.9</td>
235
- <td align="center">137849486</td>
236
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/metrics.json">metrics</a></td>
237
- </tr>
238
- <!-- ROW: retinanet_R_101_FPN_3x -->
239
- <tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
240
- <td align="center">3x</td>
241
- <td align="center">0.280</td>
242
- <td align="center">0.068</td>
243
- <td align="center">5.1</td>
244
- <td align="center">39.9</td>
245
- <td align="center">138363263</td>
246
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/model_final_59f53c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/metrics.json">metrics</a></td>
247
- </tr>
248
- </tbody></table>
249
-
250
- #### RPN & Fast R-CNN:
251
- <!--
252
- ./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
253
- -->
254
-
255
- <table><tbody>
256
- <!-- START TABLE -->
257
- <!-- TABLE HEADER -->
258
- <th valign="bottom">Name</th>
259
- <th valign="bottom">lr<br/>sched</th>
260
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
261
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
262
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
263
- <th valign="bottom">box<br/>AP</th>
264
- <th valign="bottom">prop.<br/>AR</th>
265
- <th valign="bottom">model id</th>
266
- <th valign="bottom">download</th>
267
- <!-- TABLE BODY -->
268
- <!-- ROW: rpn_R_50_C4_1x -->
269
- <tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
270
- <td align="center">1x</td>
271
- <td align="center">0.130</td>
272
- <td align="center">0.034</td>
273
- <td align="center">1.5</td>
274
- <td align="center"></td>
275
- <td align="center">51.6</td>
276
- <td align="center">137258005</td>
277
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
278
- </tr>
279
- <!-- ROW: rpn_R_50_FPN_1x -->
280
- <tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
281
- <td align="center">1x</td>
282
- <td align="center">0.186</td>
283
- <td align="center">0.032</td>
284
- <td align="center">2.7</td>
285
- <td align="center"></td>
286
- <td align="center">58.0</td>
287
- <td align="center">137258492</td>
288
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
289
- </tr>
290
- <!-- ROW: fast_rcnn_R_50_FPN_1x -->
291
- <tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
292
- <td align="center">1x</td>
293
- <td align="center">0.140</td>
294
- <td align="center">0.029</td>
295
- <td align="center">2.6</td>
296
- <td align="center">37.8</td>
297
- <td align="center"></td>
298
- <td align="center">137635226</td>
299
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
300
- </tr>
301
- </tbody></table>
302
-
303
- ### COCO Instance Segmentation Baselines with Mask R-CNN
304
- <!--
305
- ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
306
- -->
307
-
308
-
309
-
310
- <table><tbody>
311
- <!-- START TABLE -->
312
- <!-- TABLE HEADER -->
313
- <th valign="bottom">Name</th>
314
- <th valign="bottom">lr<br/>sched</th>
315
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
316
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
317
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
318
- <th valign="bottom">box<br/>AP</th>
319
- <th valign="bottom">mask<br/>AP</th>
320
- <th valign="bottom">model id</th>
321
- <th valign="bottom">download</th>
322
- <!-- TABLE BODY -->
323
- <!-- ROW: mask_rcnn_R_50_C4_1x -->
324
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
325
- <td align="center">1x</td>
326
- <td align="center">0.584</td>
327
- <td align="center">0.110</td>
328
- <td align="center">5.2</td>
329
- <td align="center">36.8</td>
330
- <td align="center">32.2</td>
331
- <td align="center">137259246</td>
332
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
333
- </tr>
334
- <!-- ROW: mask_rcnn_R_50_DC5_1x -->
335
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
336
- <td align="center">1x</td>
337
- <td align="center">0.471</td>
338
- <td align="center">0.076</td>
339
- <td align="center">6.5</td>
340
- <td align="center">38.3</td>
341
- <td align="center">34.2</td>
342
- <td align="center">137260150</td>
343
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
344
- </tr>
345
- <!-- ROW: mask_rcnn_R_50_FPN_1x -->
346
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
347
- <td align="center">1x</td>
348
- <td align="center">0.261</td>
349
- <td align="center">0.043</td>
350
- <td align="center">3.4</td>
351
- <td align="center">38.6</td>
352
- <td align="center">35.2</td>
353
- <td align="center">137260431</td>
354
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
355
- </tr>
356
- <!-- ROW: mask_rcnn_R_50_C4_3x -->
357
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
358
- <td align="center">3x</td>
359
- <td align="center">0.575</td>
360
- <td align="center">0.111</td>
361
- <td align="center">5.2</td>
362
- <td align="center">39.8</td>
363
- <td align="center">34.4</td>
364
- <td align="center">137849525</td>
365
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
366
- </tr>
367
- <!-- ROW: mask_rcnn_R_50_DC5_3x -->
368
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
369
- <td align="center">3x</td>
370
- <td align="center">0.470</td>
371
- <td align="center">0.076</td>
372
- <td align="center">6.5</td>
373
- <td align="center">40.0</td>
374
- <td align="center">35.9</td>
375
- <td align="center">137849551</td>
376
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
377
- </tr>
378
- <!-- ROW: mask_rcnn_R_50_FPN_3x -->
379
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
380
- <td align="center">3x</td>
381
- <td align="center">0.261</td>
382
- <td align="center">0.043</td>
383
- <td align="center">3.4</td>
384
- <td align="center">41.0</td>
385
- <td align="center">37.2</td>
386
- <td align="center">137849600</td>
387
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
388
- </tr>
389
- <!-- ROW: mask_rcnn_R_101_C4_3x -->
390
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
391
- <td align="center">3x</td>
392
- <td align="center">0.652</td>
393
- <td align="center">0.145</td>
394
- <td align="center">6.3</td>
395
- <td align="center">42.6</td>
396
- <td align="center">36.7</td>
397
- <td align="center">138363239</td>
398
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
399
- </tr>
400
- <!-- ROW: mask_rcnn_R_101_DC5_3x -->
401
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
402
- <td align="center">3x</td>
403
- <td align="center">0.545</td>
404
- <td align="center">0.092</td>
405
- <td align="center">7.6</td>
406
- <td align="center">41.9</td>
407
- <td align="center">37.3</td>
408
- <td align="center">138363294</td>
409
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
410
- </tr>
411
- <!-- ROW: mask_rcnn_R_101_FPN_3x -->
412
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
413
- <td align="center">3x</td>
414
- <td align="center">0.340</td>
415
- <td align="center">0.056</td>
416
- <td align="center">4.6</td>
417
- <td align="center">42.9</td>
418
- <td align="center">38.6</td>
419
- <td align="center">138205316</td>
420
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
421
- </tr>
422
- <!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
423
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
424
- <td align="center">3x</td>
425
- <td align="center">0.690</td>
426
- <td align="center">0.103</td>
427
- <td align="center">7.2</td>
428
- <td align="center">44.3</td>
429
- <td align="center">39.5</td>
430
- <td align="center">139653917</td>
431
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
432
- </tr>
433
- </tbody></table>
434
-
435
- ### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
436
- <!--
437
- ./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*' --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
438
- -->
439
-
440
-
441
- <table><tbody>
442
- <!-- START TABLE -->
443
- <!-- TABLE HEADER -->
444
- <th valign="bottom">Name</th>
445
- <th valign="bottom">lr<br/>sched</th>
446
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
447
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
448
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
449
- <th valign="bottom">box<br/>AP</th>
450
- <th valign="bottom">kp.<br/>AP</th>
451
- <th valign="bottom">model id</th>
452
- <th valign="bottom">download</th>
453
- <!-- TABLE BODY -->
454
- <!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
455
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
456
- <td align="center">1x</td>
457
- <td align="center">0.315</td>
458
- <td align="center">0.072</td>
459
- <td align="center">5.0</td>
460
- <td align="center">53.6</td>
461
- <td align="center">64.0</td>
462
- <td align="center">137261548</td>
463
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
464
- </tr>
465
- <!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
466
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
467
- <td align="center">3x</td>
468
- <td align="center">0.316</td>
469
- <td align="center">0.066</td>
470
- <td align="center">5.0</td>
471
- <td align="center">55.4</td>
472
- <td align="center">65.5</td>
473
- <td align="center">137849621</td>
474
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
475
- </tr>
476
- <!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
477
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
478
- <td align="center">3x</td>
479
- <td align="center">0.390</td>
480
- <td align="center">0.076</td>
481
- <td align="center">6.1</td>
482
- <td align="center">56.4</td>
483
- <td align="center">66.1</td>
484
- <td align="center">138363331</td>
485
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
486
- </tr>
487
- <!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
488
- <tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
489
- <td align="center">3x</td>
490
- <td align="center">0.738</td>
491
- <td align="center">0.121</td>
492
- <td align="center">8.7</td>
493
- <td align="center">57.3</td>
494
- <td align="center">66.0</td>
495
- <td align="center">139686956</td>
496
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
497
- </tr>
498
- </tbody></table>
499
-
500
- ### COCO Panoptic Segmentation Baselines with Panoptic FPN
501
- <!--
502
- ./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*' --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
503
- -->
504
-
505
-
506
- <table><tbody>
507
- <!-- START TABLE -->
508
- <!-- TABLE HEADER -->
509
- <th valign="bottom">Name</th>
510
- <th valign="bottom">lr<br/>sched</th>
511
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
512
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
513
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
514
- <th valign="bottom">box<br/>AP</th>
515
- <th valign="bottom">mask<br/>AP</th>
516
- <th valign="bottom">PQ</th>
517
- <th valign="bottom">model id</th>
518
- <th valign="bottom">download</th>
519
- <!-- TABLE BODY -->
520
- <!-- ROW: panoptic_fpn_R_50_1x -->
521
- <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
522
- <td align="center">1x</td>
523
- <td align="center">0.304</td>
524
- <td align="center">0.053</td>
525
- <td align="center">4.8</td>
526
- <td align="center">37.6</td>
527
- <td align="center">34.7</td>
528
- <td align="center">39.4</td>
529
- <td align="center">139514544</td>
530
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
531
- </tr>
532
- <!-- ROW: panoptic_fpn_R_50_3x -->
533
- <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
534
- <td align="center">3x</td>
535
- <td align="center">0.302</td>
536
- <td align="center">0.053</td>
537
- <td align="center">4.8</td>
538
- <td align="center">40.0</td>
539
- <td align="center">36.5</td>
540
- <td align="center">41.5</td>
541
- <td align="center">139514569</td>
542
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
543
- </tr>
544
- <!-- ROW: panoptic_fpn_R_101_3x -->
545
- <tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
546
- <td align="center">3x</td>
547
- <td align="center">0.392</td>
548
- <td align="center">0.066</td>
549
- <td align="center">6.0</td>
550
- <td align="center">42.4</td>
551
- <td align="center">38.5</td>
552
- <td align="center">43.0</td>
553
- <td align="center">139514519</td>
554
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
555
- </tr>
556
- </tbody></table>
557
-
558
-
559
- ### LVIS Instance Segmentation Baselines with Mask R-CNN
560
-
561
- Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
562
- These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
563
-
564
- NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
565
- They are roughly 24 epochs of LVISv0.5 data.
566
- The final results of these configs have large variance across different runs.
567
-
568
- <!--
569
- ./gen_html_table.py --config 'LVIS-InstanceSegmentation/mask*50*' 'LVIS-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
570
- -->
571
-
572
-
573
- <table><tbody>
574
- <!-- START TABLE -->
575
- <!-- TABLE HEADER -->
576
- <th valign="bottom">Name</th>
577
- <th valign="bottom">lr<br/>sched</th>
578
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
579
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
580
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
581
- <th valign="bottom">box<br/>AP</th>
582
- <th valign="bottom">mask<br/>AP</th>
583
- <th valign="bottom">model id</th>
584
- <th valign="bottom">download</th>
585
- <!-- TABLE BODY -->
586
- <!-- ROW: mask_rcnn_R_50_FPN_1x -->
587
- <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
588
- <td align="center">1x</td>
589
- <td align="center">0.292</td>
590
- <td align="center">0.107</td>
591
- <td align="center">7.1</td>
592
- <td align="center">23.6</td>
593
- <td align="center">24.4</td>
594
- <td align="center">144219072</td>
595
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
596
- </tr>
597
- <!-- ROW: mask_rcnn_R_101_FPN_1x -->
598
- <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
599
- <td align="center">1x</td>
600
- <td align="center">0.371</td>
601
- <td align="center">0.114</td>
602
- <td align="center">7.8</td>
603
- <td align="center">25.6</td>
604
- <td align="center">25.9</td>
605
- <td align="center">144219035</td>
606
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
607
- </tr>
608
- <!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
609
- <tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
610
- <td align="center">1x</td>
611
- <td align="center">0.712</td>
612
- <td align="center">0.151</td>
613
- <td align="center">10.2</td>
614
- <td align="center">26.7</td>
615
- <td align="center">27.1</td>
616
- <td align="center">144219108</td>
617
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
618
- </tr>
619
- </tbody></table>
620
-
621
-
622
-
623
- ### Cityscapes & Pascal VOC Baselines
624
-
625
- Simple baselines for
626
- * Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
627
- * Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
628
-
629
- <!--
630
- ./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
631
- -->
632
-
633
-
634
- <table><tbody>
635
- <!-- START TABLE -->
636
- <!-- TABLE HEADER -->
637
- <th valign="bottom">Name</th>
638
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
639
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
640
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
641
- <th valign="bottom">box<br/>AP</th>
642
- <th valign="bottom">box<br/>AP50</th>
643
- <th valign="bottom">mask<br/>AP</th>
644
- <th valign="bottom">model id</th>
645
- <th valign="bottom">download</th>
646
- <!-- TABLE BODY -->
647
- <!-- ROW: mask_rcnn_R_50_FPN -->
648
- <tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
649
- <td align="center">0.240</td>
650
- <td align="center">0.078</td>
651
- <td align="center">4.4</td>
652
- <td align="center"></td>
653
- <td align="center"></td>
654
- <td align="center">36.5</td>
655
- <td align="center">142423278</td>
656
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
657
- </tr>
658
- <!-- ROW: faster_rcnn_R_50_C4 -->
659
- <tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
660
- <td align="center">0.537</td>
661
- <td align="center">0.081</td>
662
- <td align="center">4.8</td>
663
- <td align="center">51.9</td>
664
- <td align="center">80.3</td>
665
- <td align="center"></td>
666
- <td align="center">142202221</td>
667
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
668
- </tr>
669
- </tbody></table>
670
-
671
-
672
-
673
- ### Other Settings
674
-
675
- Ablations for Deformable Conv and Cascade R-CNN:
676
-
677
- <!--
678
- ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
679
- -->
680
-
681
-
682
- <table><tbody>
683
- <!-- START TABLE -->
684
- <!-- TABLE HEADER -->
685
- <th valign="bottom">Name</th>
686
- <th valign="bottom">lr<br/>sched</th>
687
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
688
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
689
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
690
- <th valign="bottom">box<br/>AP</th>
691
- <th valign="bottom">mask<br/>AP</th>
692
- <th valign="bottom">model id</th>
693
- <th valign="bottom">download</th>
694
- <!-- TABLE BODY -->
695
- <!-- ROW: mask_rcnn_R_50_FPN_1x -->
696
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
697
- <td align="center">1x</td>
698
- <td align="center">0.261</td>
699
- <td align="center">0.043</td>
700
- <td align="center">3.4</td>
701
- <td align="center">38.6</td>
702
- <td align="center">35.2</td>
703
- <td align="center">137260431</td>
704
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
705
- </tr>
706
- <!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
707
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
708
- <td align="center">1x</td>
709
- <td align="center">0.342</td>
710
- <td align="center">0.048</td>
711
- <td align="center">3.5</td>
712
- <td align="center">41.5</td>
713
- <td align="center">37.5</td>
714
- <td align="center">138602867</td>
715
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
716
- </tr>
717
- <!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
718
- <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
719
- <td align="center">1x</td>
720
- <td align="center">0.317</td>
721
- <td align="center">0.052</td>
722
- <td align="center">4.0</td>
723
- <td align="center">42.1</td>
724
- <td align="center">36.4</td>
725
- <td align="center">138602847</td>
726
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
727
- </tr>
728
- <!-- ROW: mask_rcnn_R_50_FPN_3x -->
729
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
730
- <td align="center">3x</td>
731
- <td align="center">0.261</td>
732
- <td align="center">0.043</td>
733
- <td align="center">3.4</td>
734
- <td align="center">41.0</td>
735
- <td align="center">37.2</td>
736
- <td align="center">137849600</td>
737
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
738
- </tr>
739
- <!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
740
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
741
- <td align="center">3x</td>
742
- <td align="center">0.349</td>
743
- <td align="center">0.047</td>
744
- <td align="center">3.5</td>
745
- <td align="center">42.7</td>
746
- <td align="center">38.5</td>
747
- <td align="center">144998336</td>
748
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
749
- </tr>
750
- <!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
751
- <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
752
- <td align="center">3x</td>
753
- <td align="center">0.328</td>
754
- <td align="center">0.053</td>
755
- <td align="center">4.0</td>
756
- <td align="center">44.3</td>
757
- <td align="center">38.5</td>
758
- <td align="center">144998488</td>
759
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
760
- </tr>
761
- </tbody></table>
762
-
763
-
764
- Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
765
- (Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
766
- <!--
767
- ./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
768
- -->
769
-
770
-
771
- <table><tbody>
772
- <!-- START TABLE -->
773
- <!-- TABLE HEADER -->
774
- <th valign="bottom">Name</th>
775
- <th valign="bottom">lr<br/>sched</th>
776
- <th valign="bottom">train<br/>time<br/>(s/iter)</th>
777
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
778
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
779
- <th valign="bottom">box<br/>AP</th>
780
- <th valign="bottom">mask<br/>AP</th>
781
- <th valign="bottom">model id</th>
782
- <th valign="bottom">download</th>
783
- <!-- TABLE BODY -->
784
- <!-- ROW: mask_rcnn_R_50_FPN_3x -->
785
- <tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
786
- <td align="center">3x</td>
787
- <td align="center">0.261</td>
788
- <td align="center">0.043</td>
789
- <td align="center">3.4</td>
790
- <td align="center">41.0</td>
791
- <td align="center">37.2</td>
792
- <td align="center">137849600</td>
793
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
794
- </tr>
795
- <!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
796
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
797
- <td align="center">3x</td>
798
- <td align="center">0.356</td>
799
- <td align="center">0.069</td>
800
- <td align="center">7.3</td>
801
- <td align="center">42.6</td>
802
- <td align="center">38.6</td>
803
- <td align="center">138602888</td>
804
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
805
- </tr>
806
- <!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
807
- <tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
808
- <td align="center">3x</td>
809
- <td align="center">0.371</td>
810
- <td align="center">0.053</td>
811
- <td align="center">5.5</td>
812
- <td align="center">41.9</td>
813
- <td align="center">37.8</td>
814
- <td align="center">169527823</td>
815
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
816
- </tr>
817
- <!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
818
- <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
819
- <td align="center">3x</td>
820
- <td align="center">0.400</td>
821
- <td align="center">0.069</td>
822
- <td align="center">9.8</td>
823
- <td align="center">39.9</td>
824
- <td align="center">36.6</td>
825
- <td align="center">138602908</td>
826
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
827
- </tr>
828
- <!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
829
- <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
830
- <td align="center">9x</td>
831
- <td align="center">N/A</td>
832
- <td align="center">0.070</td>
833
- <td align="center">9.8</td>
834
- <td align="center">43.7</td>
835
- <td align="center">39.6</td>
836
- <td align="center">183808979</td>
837
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
838
- </tr>
839
- <!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
840
- <tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
841
- <td align="center">9x</td>
842
- <td align="center">N/A</td>
843
- <td align="center">0.055</td>
844
- <td align="center">7.2</td>
845
- <td align="center">43.6</td>
846
- <td align="center">39.3</td>
847
- <td align="center">184226666</td>
848
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
849
- </tr>
850
- </tbody></table>
851
-
852
-
853
- A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
854
-
855
- <!--
856
- ./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
857
- # manually add TTA results
858
- -->
859
-
860
-
861
- <table><tbody>
862
- <!-- START TABLE -->
863
- <!-- TABLE HEADER -->
864
- <th valign="bottom">Name</th>
865
- <th valign="bottom">inference<br/>time<br/>(s/im)</th>
866
- <th valign="bottom">train<br/>mem<br/>(GB)</th>
867
- <th valign="bottom">box<br/>AP</th>
868
- <th valign="bottom">mask<br/>AP</th>
869
- <th valign="bottom">PQ</th>
870
- <th valign="bottom">model id</th>
871
- <th valign="bottom">download</th>
872
- <!-- TABLE BODY -->
873
- <!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
874
- <tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
875
- <td align="center">0.107</td>
876
- <td align="center">11.4</td>
877
- <td align="center">47.4</td>
878
- <td align="center">41.3</td>
879
- <td align="center">46.1</td>
880
- <td align="center">139797668</td>
881
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
882
- </tr>
883
- <!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
884
- <tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
885
- <td align="center">0.242</td>
886
- <td align="center">15.1</td>
887
- <td align="center">50.2</td>
888
- <td align="center">44.0</td>
889
- <td align="center"></td>
890
- <td align="center">18131413</td>
891
- <td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a>&nbsp;|&nbsp;<a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
892
- </tr>
893
- <!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
894
- <tr><td align="left">above + test-time aug.</td>
895
- <td align="center"></td>
896
- <td align="center"></td>
897
- <td align="center">51.9</td>
898
- <td align="center">45.9</td>
899
- <td align="center"></td>
900
- <td align="center"></td>
901
- <td align="center"></td>
902
- </tr>
903
- </tbody></table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/README.md DELETED
@@ -1,56 +0,0 @@
1
- <img src=".github/Detectron2-Logo-Horz.svg" width="300" >
2
-
3
- Detectron2 is Facebook AI Research's next generation software system
4
- that implements state-of-the-art object detection algorithms.
5
- It is a ground-up rewrite of the previous version,
6
- [Detectron](https://github.com/facebookresearch/Detectron/),
7
- and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
8
-
9
- <div align="center">
10
- <img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
11
- </div>
12
-
13
- ### What's New
14
- * It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
15
- * Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
16
- * Can be used as a library to support [different projects](projects/) on top of it.
17
- We'll open source more research projects in this way.
18
- * It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
19
-
20
- See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
21
- to see more demos and learn about detectron2.
22
-
23
- ## Installation
24
-
25
- See [INSTALL.md](INSTALL.md).
26
-
27
- ## Quick Start
28
-
29
- See [GETTING_STARTED.md](GETTING_STARTED.md),
30
- or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
31
-
32
- Learn more at our [documentation](https://detectron2.readthedocs.org).
33
- And see [projects/](projects/) for some projects that are built on top of detectron2.
34
-
35
- ## Model Zoo and Baselines
36
-
37
- We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
38
-
39
-
40
- ## License
41
-
42
- Detectron2 is released under the [Apache 2.0 license](LICENSE).
43
-
44
- ## Citing Detectron2
45
-
46
- If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
47
-
48
- ```BibTeX
49
- @misc{wu2019detectron2,
50
- author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
51
- Wan-Yen Lo and Ross Girshick},
52
- title = {Detectron2},
53
- howpublished = {\url{https://github.com/facebookresearch/detectron2}},
54
- year = {2019}
55
- }
56
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-C4.yaml DELETED
@@ -1,18 +0,0 @@
1
- MODEL:
2
- META_ARCHITECTURE: "GeneralizedRCNN"
3
- RPN:
4
- PRE_NMS_TOPK_TEST: 6000
5
- POST_NMS_TOPK_TEST: 1000
6
- ROI_HEADS:
7
- NAME: "Res5ROIHeads"
8
- DATASETS:
9
- TRAIN: ("coco_2017_train",)
10
- TEST: ("coco_2017_val",)
11
- SOLVER:
12
- IMS_PER_BATCH: 16
13
- BASE_LR: 0.02
14
- STEPS: (60000, 80000)
15
- MAX_ITER: 90000
16
- INPUT:
17
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
18
- VERSION: 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/SCHP/mhp_extension/detectron2/configs/Base-RCNN-DilatedC5.yaml DELETED
@@ -1,31 +0,0 @@
1
- MODEL:
2
- META_ARCHITECTURE: "GeneralizedRCNN"
3
- RESNETS:
4
- OUT_FEATURES: ["res5"]
5
- RES5_DILATION: 2
6
- RPN:
7
- IN_FEATURES: ["res5"]
8
- PRE_NMS_TOPK_TEST: 6000
9
- POST_NMS_TOPK_TEST: 1000
10
- ROI_HEADS:
11
- NAME: "StandardROIHeads"
12
- IN_FEATURES: ["res5"]
13
- ROI_BOX_HEAD:
14
- NAME: "FastRCNNConvFCHead"
15
- NUM_FC: 2
16
- POOLER_RESOLUTION: 7
17
- ROI_MASK_HEAD:
18
- NAME: "MaskRCNNConvUpsampleHead"
19
- NUM_CONV: 4
20
- POOLER_RESOLUTION: 14
21
- DATASETS:
22
- TRAIN: ("coco_2017_train",)
23
- TEST: ("coco_2017_val",)
24
- SOLVER:
25
- IMS_PER_BATCH: 16
26
- BASE_LR: 0.02
27
- STEPS: (60000, 80000)
28
- MAX_ITER: 90000
29
- INPUT:
30
- MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
31
- VERSION: 2