|
|
|
import numpy as np |
|
from typing import Callable, Dict, Optional, Tuple, Union |
|
import fvcore.nn.weight_init as weight_init |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import configurable |
|
from detectron2.layers import Conv2d, ShapeSpec, get_norm |
|
from detectron2.structures import ImageList |
|
from detectron2.utils.registry import Registry |
|
|
|
from ..backbone import Backbone, build_backbone |
|
from ..postprocessing import sem_seg_postprocess |
|
from .build import META_ARCH_REGISTRY |
|
|
|
__all__ = [ |
|
"SemanticSegmentor", |
|
"SEM_SEG_HEADS_REGISTRY", |
|
"SemSegFPNHead", |
|
"build_sem_seg_head", |
|
] |
|
|
|
|
|
SEM_SEG_HEADS_REGISTRY = Registry("SEM_SEG_HEADS") |
|
SEM_SEG_HEADS_REGISTRY.__doc__ = """ |
|
Registry for semantic segmentation heads, which make semantic segmentation predictions |
|
from feature maps. |
|
""" |
|
|
|
|
|
@META_ARCH_REGISTRY.register() |
|
class SemanticSegmentor(nn.Module): |
|
""" |
|
Main class for semantic segmentation architectures. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
backbone: Backbone, |
|
sem_seg_head: nn.Module, |
|
pixel_mean: Tuple[float], |
|
pixel_std: Tuple[float], |
|
): |
|
""" |
|
Args: |
|
backbone: a backbone module, must follow detectron2's backbone interface |
|
sem_seg_head: a module that predicts semantic segmentation from backbone features |
|
pixel_mean, pixel_std: list or tuple with #channels element, representing |
|
the per-channel mean and std to be used to normalize the input image |
|
""" |
|
super().__init__() |
|
self.backbone = backbone |
|
self.sem_seg_head = sem_seg_head |
|
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) |
|
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
backbone = build_backbone(cfg) |
|
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) |
|
return { |
|
"backbone": backbone, |
|
"sem_seg_head": sem_seg_head, |
|
"pixel_mean": cfg.MODEL.PIXEL_MEAN, |
|
"pixel_std": cfg.MODEL.PIXEL_STD, |
|
} |
|
|
|
@property |
|
def device(self): |
|
return self.pixel_mean.device |
|
|
|
def forward(self, batched_inputs): |
|
""" |
|
Args: |
|
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. |
|
Each item in the list contains the inputs for one image. |
|
|
|
For now, each item in the list is a dict that contains: |
|
|
|
* "image": Tensor, image in (C, H, W) format. |
|
* "sem_seg": semantic segmentation ground truth |
|
* Other information that's included in the original dicts, such as: |
|
"height", "width" (int): the output resolution of the model (may be different |
|
from input resolution), used in inference. |
|
|
|
|
|
Returns: |
|
list[dict]: |
|
Each dict is the output for one input image. |
|
The dict contains one key "sem_seg" whose value is a |
|
Tensor that represents the |
|
per-pixel segmentation prediced by the head. |
|
The prediction has shape KxHxW that represents the logits of |
|
each class for each pixel. |
|
""" |
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors( |
|
images, |
|
self.backbone.size_divisibility, |
|
padding_constraints=self.backbone.padding_constraints, |
|
) |
|
|
|
features = self.backbone(images.tensor) |
|
|
|
if "sem_seg" in batched_inputs[0]: |
|
targets = [x["sem_seg"].to(self.device) for x in batched_inputs] |
|
targets = ImageList.from_tensors( |
|
targets, |
|
self.backbone.size_divisibility, |
|
self.sem_seg_head.ignore_value, |
|
self.backbone.padding_constraints, |
|
).tensor |
|
else: |
|
targets = None |
|
results, losses = self.sem_seg_head(features, targets) |
|
|
|
if self.training: |
|
return losses |
|
|
|
processed_results = [] |
|
for result, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
r = sem_seg_postprocess(result, image_size, height, width) |
|
processed_results.append({"sem_seg": r}) |
|
return processed_results |
|
|
|
|
|
def build_sem_seg_head(cfg, input_shape): |
|
""" |
|
Build a semantic segmentation head from `cfg.MODEL.SEM_SEG_HEAD.NAME`. |
|
""" |
|
name = cfg.MODEL.SEM_SEG_HEAD.NAME |
|
return SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape) |
|
|
|
|
|
@SEM_SEG_HEADS_REGISTRY.register() |
|
class SemSegFPNHead(nn.Module): |
|
""" |
|
A semantic segmentation head described in :paper:`PanopticFPN`. |
|
It takes a list of FPN features as input, and applies a sequence of |
|
3x3 convs and upsampling to scale all of them to the stride defined by |
|
``common_stride``. Then these features are added and used to make final |
|
predictions by another 1x1 conv layer. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
input_shape: Dict[str, ShapeSpec], |
|
*, |
|
num_classes: int, |
|
conv_dims: int, |
|
common_stride: int, |
|
loss_weight: float = 1.0, |
|
norm: Optional[Union[str, Callable]] = None, |
|
ignore_value: int = -1, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
input_shape: shapes (channels and stride) of the input features |
|
num_classes: number of classes to predict |
|
conv_dims: number of output channels for the intermediate conv layers. |
|
common_stride: the common stride that all features will be upscaled to |
|
loss_weight: loss weight |
|
norm (str or callable): normalization for all conv layers |
|
ignore_value: category id to be ignored during training. |
|
""" |
|
super().__init__() |
|
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) |
|
if not len(input_shape): |
|
raise ValueError("SemSegFPNHead(input_shape=) cannot be empty!") |
|
self.in_features = [k for k, v in input_shape] |
|
feature_strides = [v.stride for k, v in input_shape] |
|
feature_channels = [v.channels for k, v in input_shape] |
|
|
|
self.ignore_value = ignore_value |
|
self.common_stride = common_stride |
|
self.loss_weight = loss_weight |
|
|
|
self.scale_heads = [] |
|
for in_feature, stride, channels in zip( |
|
self.in_features, feature_strides, feature_channels |
|
): |
|
head_ops = [] |
|
head_length = max(1, int(np.log2(stride) - np.log2(self.common_stride))) |
|
for k in range(head_length): |
|
norm_module = get_norm(norm, conv_dims) |
|
conv = Conv2d( |
|
channels if k == 0 else conv_dims, |
|
conv_dims, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=not norm, |
|
norm=norm_module, |
|
activation=F.relu, |
|
) |
|
weight_init.c2_msra_fill(conv) |
|
head_ops.append(conv) |
|
if stride != self.common_stride: |
|
head_ops.append( |
|
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False) |
|
) |
|
self.scale_heads.append(nn.Sequential(*head_ops)) |
|
self.add_module(in_feature, self.scale_heads[-1]) |
|
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0) |
|
weight_init.c2_msra_fill(self.predictor) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): |
|
return { |
|
"input_shape": { |
|
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES |
|
}, |
|
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, |
|
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, |
|
"conv_dims": cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM, |
|
"common_stride": cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE, |
|
"norm": cfg.MODEL.SEM_SEG_HEAD.NORM, |
|
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT, |
|
} |
|
|
|
def forward(self, features, targets=None): |
|
""" |
|
Returns: |
|
In training, returns (None, dict of losses) |
|
In inference, returns (CxHxW logits, {}) |
|
""" |
|
x = self.layers(features) |
|
if self.training: |
|
return None, self.losses(x, targets) |
|
else: |
|
x = F.interpolate( |
|
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False |
|
) |
|
return x, {} |
|
|
|
def layers(self, features): |
|
for i, f in enumerate(self.in_features): |
|
if i == 0: |
|
x = self.scale_heads[i](features[f]) |
|
else: |
|
x = x + self.scale_heads[i](features[f]) |
|
x = self.predictor(x) |
|
return x |
|
|
|
def losses(self, predictions, targets): |
|
predictions = predictions.float() |
|
predictions = F.interpolate( |
|
predictions, |
|
scale_factor=self.common_stride, |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
loss = F.cross_entropy( |
|
predictions, targets, reduction="mean", ignore_index=self.ignore_value |
|
) |
|
losses = {"loss_sem_seg": loss * self.loss_weight} |
|
return losses |
|
|