|
import numpy as np |
|
from typing import Dict, List, Optional, Tuple |
|
import torch |
|
from torch import Tensor, nn |
|
|
|
from detectron2.data.detection_utils import convert_image_to_rgb |
|
from detectron2.layers import move_device_like |
|
from detectron2.modeling import Backbone |
|
from detectron2.structures import Boxes, ImageList, Instances |
|
from detectron2.utils.events import get_event_storage |
|
|
|
from ..postprocessing import detector_postprocess |
|
|
|
|
|
def permute_to_N_HWA_K(tensor, K: int): |
|
""" |
|
Transpose/reshape a tensor from (N, (Ai x K), H, W) to (N, (HxWxAi), K) |
|
""" |
|
assert tensor.dim() == 4, tensor.shape |
|
N, _, H, W = tensor.shape |
|
tensor = tensor.view(N, -1, K, H, W) |
|
tensor = tensor.permute(0, 3, 4, 1, 2) |
|
tensor = tensor.reshape(N, -1, K) |
|
return tensor |
|
|
|
|
|
class DenseDetector(nn.Module): |
|
""" |
|
Base class for dense detector. We define a dense detector as a fully-convolutional model that |
|
makes per-pixel (i.e. dense) predictions. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
backbone: Backbone, |
|
head: nn.Module, |
|
head_in_features: Optional[List[str]] = None, |
|
*, |
|
pixel_mean, |
|
pixel_std, |
|
): |
|
""" |
|
Args: |
|
backbone: backbone module |
|
head: head module |
|
head_in_features: backbone features to use in head. Default to all backbone features. |
|
pixel_mean (Tuple[float]): |
|
Values to be used for image normalization (BGR order). |
|
To train on images of different number of channels, set different mean & std. |
|
Default values are the mean pixel value from ImageNet: [103.53, 116.28, 123.675] |
|
pixel_std (Tuple[float]): |
|
When using pre-trained models in Detectron1 or any MSRA models, |
|
std has been absorbed into its conv1 weights, so the std needs to be set 1. |
|
Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std) |
|
""" |
|
super().__init__() |
|
|
|
self.backbone = backbone |
|
self.head = head |
|
if head_in_features is None: |
|
shapes = self.backbone.output_shape() |
|
self.head_in_features = sorted(shapes.keys(), key=lambda x: shapes[x].stride) |
|
else: |
|
self.head_in_features = head_in_features |
|
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) |
|
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) |
|
|
|
@property |
|
def device(self): |
|
return self.pixel_mean.device |
|
|
|
def _move_to_current_device(self, x): |
|
return move_device_like(x, self.pixel_mean) |
|
|
|
def forward(self, batched_inputs: List[Dict[str, Tensor]]): |
|
""" |
|
Args: |
|
batched_inputs: a list, batched outputs of :class:`DatasetMapper` . |
|
Each item in the list contains the inputs for one image. |
|
For now, each item in the list is a dict that contains: |
|
|
|
* image: Tensor, image in (C, H, W) format. |
|
* instances: Instances |
|
|
|
Other information that's included in the original dicts, such as: |
|
|
|
* "height", "width" (int): the output resolution of the model, used in inference. |
|
See :meth:`postprocess` for details. |
|
|
|
Returns: |
|
In training, dict[str, Tensor]: mapping from a named loss to a tensor storing the |
|
loss. Used during training only. In inference, the standard output format, described |
|
in :doc:`/tutorials/models`. |
|
""" |
|
images = self.preprocess_image(batched_inputs) |
|
features = self.backbone(images.tensor) |
|
features = [features[f] for f in self.head_in_features] |
|
predictions = self.head(features) |
|
|
|
if self.training: |
|
assert not torch.jit.is_scripting(), "Not supported" |
|
assert "instances" in batched_inputs[0], "Instance annotations are missing in training!" |
|
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] |
|
return self.forward_training(images, features, predictions, gt_instances) |
|
else: |
|
results = self.forward_inference(images, features, predictions) |
|
if torch.jit.is_scripting(): |
|
return results |
|
|
|
processed_results = [] |
|
for results_per_image, input_per_image, image_size in zip( |
|
results, batched_inputs, images.image_sizes |
|
): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
r = detector_postprocess(results_per_image, height, width) |
|
processed_results.append({"instances": r}) |
|
return processed_results |
|
|
|
def forward_training(self, images, features, predictions, gt_instances): |
|
raise NotImplementedError() |
|
|
|
def preprocess_image(self, batched_inputs: List[Dict[str, Tensor]]): |
|
""" |
|
Normalize, pad and batch the input images. |
|
""" |
|
images = [self._move_to_current_device(x["image"]) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors( |
|
images, |
|
self.backbone.size_divisibility, |
|
padding_constraints=self.backbone.padding_constraints, |
|
) |
|
return images |
|
|
|
def _transpose_dense_predictions( |
|
self, predictions: List[List[Tensor]], dims_per_anchor: List[int] |
|
) -> List[List[Tensor]]: |
|
""" |
|
Transpose the dense per-level predictions. |
|
|
|
Args: |
|
predictions: a list of outputs, each is a list of per-level |
|
predictions with shape (N, Ai x K, Hi, Wi), where N is the |
|
number of images, Ai is the number of anchors per location on |
|
level i, K is the dimension of predictions per anchor. |
|
dims_per_anchor: the value of K for each predictions. e.g. 4 for |
|
box prediction, #classes for classification prediction. |
|
|
|
Returns: |
|
List[List[Tensor]]: each prediction is transposed to (N, Hi x Wi x Ai, K). |
|
""" |
|
assert len(predictions) == len(dims_per_anchor) |
|
res: List[List[Tensor]] = [] |
|
for pred, dim_per_anchor in zip(predictions, dims_per_anchor): |
|
pred = [permute_to_N_HWA_K(x, dim_per_anchor) for x in pred] |
|
res.append(pred) |
|
return res |
|
|
|
def _ema_update(self, name: str, value: float, initial_value: float, momentum: float = 0.9): |
|
""" |
|
Apply EMA update to `self.name` using `value`. |
|
|
|
This is mainly used for loss normalizer. In Detectron1, loss is normalized by number |
|
of foreground samples in the batch. When batch size is 1 per GPU, #foreground has a |
|
large variance and using it lead to lower performance. Therefore we maintain an EMA of |
|
#foreground to stabilize the normalizer. |
|
|
|
Args: |
|
name: name of the normalizer |
|
value: the new value to update |
|
initial_value: the initial value to start with |
|
momentum: momentum of EMA |
|
|
|
Returns: |
|
float: the updated EMA value |
|
""" |
|
if hasattr(self, name): |
|
old = getattr(self, name) |
|
else: |
|
old = initial_value |
|
new = old * momentum + value * (1 - momentum) |
|
setattr(self, name, new) |
|
return new |
|
|
|
def _decode_per_level_predictions( |
|
self, |
|
anchors: Boxes, |
|
pred_scores: Tensor, |
|
pred_deltas: Tensor, |
|
score_thresh: float, |
|
topk_candidates: int, |
|
image_size: Tuple[int, int], |
|
) -> Instances: |
|
""" |
|
Decode boxes and classification predictions of one featuer level, by |
|
the following steps: |
|
1. filter the predictions based on score threshold and top K scores. |
|
2. transform the box regression outputs |
|
3. return the predicted scores, classes and boxes |
|
|
|
Args: |
|
anchors: Boxes, anchor for this feature level |
|
pred_scores: HxWxA,K |
|
pred_deltas: HxWxA,4 |
|
|
|
Returns: |
|
Instances: with field "scores", "pred_boxes", "pred_classes". |
|
""" |
|
|
|
|
|
keep_idxs = pred_scores > score_thresh |
|
pred_scores = pred_scores[keep_idxs] |
|
topk_idxs = torch.nonzero(keep_idxs) |
|
|
|
|
|
topk_idxs_size = topk_idxs.shape[0] |
|
if isinstance(topk_idxs_size, Tensor): |
|
|
|
num_topk = torch.clamp(topk_idxs_size, max=topk_candidates) |
|
else: |
|
num_topk = min(topk_idxs_size, topk_candidates) |
|
pred_scores, idxs = pred_scores.topk(num_topk) |
|
topk_idxs = topk_idxs[idxs] |
|
|
|
anchor_idxs, classes_idxs = topk_idxs.unbind(dim=1) |
|
|
|
pred_boxes = self.box2box_transform.apply_deltas( |
|
pred_deltas[anchor_idxs], anchors.tensor[anchor_idxs] |
|
) |
|
return Instances( |
|
image_size, pred_boxes=Boxes(pred_boxes), scores=pred_scores, pred_classes=classes_idxs |
|
) |
|
|
|
def _decode_multi_level_predictions( |
|
self, |
|
anchors: List[Boxes], |
|
pred_scores: List[Tensor], |
|
pred_deltas: List[Tensor], |
|
score_thresh: float, |
|
topk_candidates: int, |
|
image_size: Tuple[int, int], |
|
) -> Instances: |
|
""" |
|
Run `_decode_per_level_predictions` for all feature levels and concat the results. |
|
""" |
|
predictions = [ |
|
self._decode_per_level_predictions( |
|
anchors_i, |
|
box_cls_i, |
|
box_reg_i, |
|
score_thresh, |
|
topk_candidates, |
|
image_size, |
|
) |
|
|
|
for box_cls_i, box_reg_i, anchors_i in zip(pred_scores, pred_deltas, anchors) |
|
] |
|
return predictions[0].cat(predictions) |
|
|
|
def visualize_training(self, batched_inputs, results): |
|
""" |
|
A function used to visualize ground truth images and final network predictions. |
|
It shows ground truth bounding boxes on the original image and up to 20 |
|
predicted object bounding boxes on the original image. |
|
|
|
Args: |
|
batched_inputs (list): a list that contains input to the model. |
|
results (List[Instances]): a list of #images elements returned by forward_inference(). |
|
""" |
|
from detectron2.utils.visualizer import Visualizer |
|
|
|
assert len(batched_inputs) == len( |
|
results |
|
), "Cannot visualize inputs and results of different sizes" |
|
storage = get_event_storage() |
|
max_boxes = 20 |
|
|
|
image_index = 0 |
|
img = batched_inputs[image_index]["image"] |
|
img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) |
|
v_gt = Visualizer(img, None) |
|
v_gt = v_gt.overlay_instances(boxes=batched_inputs[image_index]["instances"].gt_boxes) |
|
anno_img = v_gt.get_image() |
|
processed_results = detector_postprocess(results[image_index], img.shape[0], img.shape[1]) |
|
predicted_boxes = processed_results.pred_boxes.tensor.detach().cpu().numpy() |
|
|
|
v_pred = Visualizer(img, None) |
|
v_pred = v_pred.overlay_instances(boxes=predicted_boxes[0:max_boxes]) |
|
prop_img = v_pred.get_image() |
|
vis_img = np.vstack((anno_img, prop_img)) |
|
vis_img = vis_img.transpose(2, 0, 1) |
|
vis_name = f"Top: GT bounding boxes; Bottom: {max_boxes} Highest Scoring Results" |
|
storage.put_image(vis_name, vis_img) |
|
|