Shabdobhedi
commited on
Commit
•
9a20526
1
Parent(s):
2883d0c
Upload 3 files
Browse files- src/__init__.py +0 -0
- src/helper.py +30 -0
- src/prompt.py +12 -0
src/__init__.py
ADDED
File without changes
|
src/helper.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
|
5 |
+
|
6 |
+
# Extract data from the PDF
|
7 |
+
def load_pdf(data):
|
8 |
+
loader = DirectoryLoader(data,
|
9 |
+
glob="*.pdf",
|
10 |
+
loader_cls=PyPDFLoader)
|
11 |
+
|
12 |
+
documents = loader.load()
|
13 |
+
|
14 |
+
return documents
|
15 |
+
|
16 |
+
|
17 |
+
# Create text chunks
|
18 |
+
def text_split(extracted_data):
|
19 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
20 |
+
chunk_size=500, chunk_overlap=20)
|
21 |
+
text_chunks = text_splitter.split_documents(extracted_data)
|
22 |
+
|
23 |
+
return text_chunks
|
24 |
+
|
25 |
+
|
26 |
+
# download embedding model
|
27 |
+
def download_hugging_face_embeddings():
|
28 |
+
embeddings = HuggingFaceEmbeddings(
|
29 |
+
model_name='sentence-transformers/all-MiniLM-L6-v2')
|
30 |
+
return embeddings
|
src/prompt.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
prompt_template = """
|
4 |
+
Use the following pieces of information to answer the user's question.
|
5 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
6 |
+
|
7 |
+
Context: {context}
|
8 |
+
Question: {question}
|
9 |
+
|
10 |
+
Only return the helpful answer below and nothing else.
|
11 |
+
Helpful answer:
|
12 |
+
"""
|