Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
# Set up the text-to-speech pipeline with a compatible model | |
pipe = pipeline('text-to-speech', 'Xenova/speecht5_tts'); | |
def text_to_speech(text): | |
result = pipe(text) | |
audio_path = 'output.wav' | |
with open(audio_path, 'wb') as f: | |
f.write(result['audio']) | |
return audio_path | |
st.title("Text to Speech with Hugging Face Model") | |
text = st.text_area("Enter text to convert to speech:") | |
if st.button("Convert"): | |
if text: | |
audio_file = text_to_speech(text) | |
audio_bytes = open(audio_file, 'rb').read() | |
st.audio(audio_bytes, format='audio/wav') | |
else: | |
st.warning("Please enter some text.") | |