Qwen2.5-72B / app.py
Sg-at-srijan-us-kg's picture
Update app.py
c9b44f8 verified
raw
history blame
2.32 kB
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
file=None
):
# Initialize the messages with the system message
messages = [{"role": "system", "content": system_message}]
# Read file content if a file is uploaded
if file is not None:
try:
if hasattr(file, 'value'): # Check if file is a NamedString or similar
file_content = file.value.decode("utf-8") # Decode the string content
else:
file_content = file.read().decode("utf-8") # Fallback for other file types
print("File content:", file_content) # Debug print
message = f"{file_content}\n\n{message}" # Append file content to message
except Exception as e:
print("Error reading file:", e)
message = f"(Error reading file: {e})\n\n{message}"
# Append conversation history
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Append the latest user message
messages.append({"role": "user", "content": message})
response = ""
# Stream response from the model
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=32000, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
gr.File(label="Upload a text file", file_types=[".txt"])
],
)
if __name__ == "__main__":
demo.launch()