Gbadamosi_oluwaseyi commited on
Commit
092f4eb
1 Parent(s): 5d0397c
.streamlit/config.toml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [theme]
2
+ # primaryColor="#d33682"
3
+ # backgroundColor="#002b36"
4
+ # secondaryBackgroundColor="#586e75"
5
+ # textColor="#fafafa"
6
+ # font="sans serif"
__pycache__/function.cpython-38.pyc ADDED
Binary file (3.17 kB). View file
 
app.py CHANGED
@@ -9,29 +9,47 @@ from wordcloud import WordCloud
9
  from datetime import datetime
10
  warnings.filterwarnings("ignore")
11
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  st.set_option('deprecation.showPyplotGlobalUse', False)
13
 
14
  def main():
15
- menu = ["Home","Storage","About"]
16
- create_table()
17
-
18
- choice = st.sidebar.selectbox("Menu",menu)
19
-
20
- if choice == "Home":
21
- st.title("Demo")
 
 
 
22
 
23
- st.sidebar.subheader("Tuning/Settings")
24
- # max_length= st.sidebar.slider("Maximum length of the generated text ",30,100)
25
- # top_k= st.sidebar.slider(" limits the sampled tokens to the top k values ",1,100)
26
- # temperature= st.sidebar.slider("Controls the craziness of the text ",0.7,100.0)
27
  model_type = st.sidebar.selectbox("Model type", options=["Bart","T5"])
28
 
 
29
  upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file for summarization")
30
 
31
- st.markdown("<h3 style='text-align: center; color: red;'>OR</h3>",unsafe_allow_html=True,)
32
 
 
33
  plain_text = st.text_area("Type your Message...",height=200)
34
 
 
35
  if upload_doc:
36
  clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
37
  else:
@@ -47,12 +65,8 @@ def main():
47
  with st.spinner(
48
  text="Loading Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
49
  summarizer_model = bart()
50
- summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
51
  summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
52
- st.success("Data Submitted for model retraining")
53
- postdate = datetime.now()
54
- # Add Data To Database
55
- add_data(text_to_summarize,summarized_text,postdate)
56
 
57
  elif model_type == "T5":
58
  text_to_summarize = clean_text
@@ -60,26 +74,9 @@ def main():
60
  with st.spinner(
61
  text="Loading T5 Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
62
  summarizer_model = t5()
63
- summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
64
  summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
65
- st.success("Data Submitted for model retraining")
66
- postdate = datetime.now()
67
- # Add Data To Database
68
- add_data(text_to_summarize,summarized_text,postdate)
69
-
70
- # else:
71
- # text_to_summarize = clean_text
72
 
73
- # with st.spinner(
74
- # text="Loading Pegasus Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
75
- # summarizer_model = pegasus()
76
- # summarized_text = summarizer_model(text_to_summarize, max_length=100, min_length=30)
77
- # # summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
78
- # st.success("Data Submitted for model retraining")
79
- # postdate = datetime.now()
80
- # # Add Data To Database
81
- # # add_data(text_to_summarize,summarized_text,postdate)
82
-
83
  res_col1 ,res_col2 = st.columns(2)
84
  with res_col1:
85
  st.subheader("Generated Text Visualization")
@@ -96,24 +93,6 @@ def main():
96
  st.subheader("Summarized Text Output")
97
  st.success("Summarized Text")
98
  st.write(summarized_text)
99
-
100
- elif choice == "Storage":
101
- st.title("Manage & Monitor Results")
102
- # stored_data = view_all_data()
103
- # new_df = pd.DataFrame(stored_data,columns=["text_to_summarize","summarized_text","postdate"])
104
- # st.dataframe(new_df)
105
- # new_df['postdate'] = pd.to_datetime(new_df['postdate'])
106
-
107
-
108
- else:
109
- st.subheader("About")
110
- # html_temp ="""<div>
111
- # <p></p>
112
- # <p></p>
113
- # </div>"""
114
- # st.markdown(html_temp, unsafe_allow_html=True)
115
-
116
-
117
 
118
  if __name__ == '__main__':
119
  main()
 
9
  from datetime import datetime
10
  warnings.filterwarnings("ignore")
11
 
12
+ # page info setup
13
+ menu_items = {
14
+ 'Get help':'https://www.linkedin.com/in/oluwaseyi-gbadamosi-41015216b/' ,
15
+ 'Report a bug': 'https://www.linkedin.com/in/oluwaseyi-gbadamosi-41015216b/',
16
+ 'About': '''
17
+ ## My Custom App
18
+
19
+ Some markdown to show in the About dialog.
20
+ '''
21
+ }
22
+ #page configuration
23
+ st.set_page_config(page_title="Article Summerizer", page_icon="./favicon/favicon.ico",menu_items=menu_items)
24
  st.set_option('deprecation.showPyplotGlobalUse', False)
25
 
26
  def main():
27
+ # This is used to hide the made with streamlit watermark
28
+ hide_streamlit_style = """
29
+ <style>
30
+ footer {visibility: hidden;}
31
+ </style>
32
+ """
33
+ st.markdown(hide_streamlit_style, unsafe_allow_html=True)
34
+
35
+ # Article Summerizer heading
36
+ st.markdown("<h1 style = 'color:gold; align:center; font-size: 40px;'> Article Summerizer</h1>", unsafe_allow_html=True)
37
 
38
+ # control for Model Settings
39
+ st.sidebar.markdown("<h4 style = 'color:gold; align:center; font-size: 20px;'> Model Settings</h1>", unsafe_allow_html=True)
40
+ max_length= st.sidebar.number_input("Maximum length of the generated text is 200 tokens",max_value=200)
41
+ min_length= st.sidebar.number_input("Maximum length of the generated text",min_value=30)
42
  model_type = st.sidebar.selectbox("Model type", options=["Bart","T5"])
43
 
44
+ # This function is used to upload a .txt, .pdf, .docx file for summarization
45
  upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file for summarization")
46
 
47
+ st.markdown("<h3 style='text-align: center; color: gold;'>OR</h3>",unsafe_allow_html=True)
48
 
49
+ #This function is used to Type your Message... (text area)
50
  plain_text = st.text_area("Type your Message...",height=200)
51
 
52
+ # this is used to control the logic of the code
53
  if upload_doc:
54
  clean_text = preprocess_plain_text(extract_text_from_file(upload_doc))
55
  else:
 
65
  with st.spinner(
66
  text="Loading Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
67
  summarizer_model = bart()
68
+ summarized_text = summarizer_model(text_to_summarize, max_length=max_length ,min_length=min_length)
69
  summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
 
 
 
 
70
 
71
  elif model_type == "T5":
72
  text_to_summarize = clean_text
 
74
  with st.spinner(
75
  text="Loading T5 Model and Extracting summary. This might take a few seconds depending on the length of your text..."):
76
  summarizer_model = t5()
77
+ summarized_text = summarizer_model(text_to_summarize, max_length=max_length, min_length=min_length)
78
  summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
 
 
 
 
 
 
 
79
 
 
 
 
 
 
 
 
 
 
 
80
  res_col1 ,res_col2 = st.columns(2)
81
  with res_col1:
82
  st.subheader("Generated Text Visualization")
 
93
  st.subheader("Summarized Text Output")
94
  st.success("Summarized Text")
95
  st.write(summarized_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  if __name__ == '__main__':
98
  main()
favicon/favicon.ico ADDED
requirements.txt CHANGED
@@ -3,7 +3,6 @@ pandas==1.3.5
3
  PyPDF2==1.26.0
4
  regex==2021.8.28
5
  transformers==4.17.0
6
- wordcloud== 1.8.1
7
  torch==1.10.1
8
  streamlit==1.8.1
9
- # tensorflow==2.1.0
 
3
  PyPDF2==1.26.0
4
  regex==2021.8.28
5
  transformers==4.17.0
6
+ wordcloud==1.8.1
7
  torch==1.10.1
8
  streamlit==1.8.1