Spaces:
Sleeping
Sleeping
Seif-aber
commited on
Commit
·
355fe19
1
Parent(s):
c77e641
document q&a assistant with Gemini & RAG
Browse files- app.py +50 -0
- requirements.txt +7 -0
- utils.py +64 -0
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from utils import load_data, get_gemini_embedding
|
4 |
+
|
5 |
+
|
6 |
+
def process_document(doc, question):
|
7 |
+
"""Process document and return response to question."""
|
8 |
+
temp_path = os.path.join("data", doc.name)
|
9 |
+
try:
|
10 |
+
with open(temp_path, "wb") as f:
|
11 |
+
f.write(doc.getbuffer())
|
12 |
+
documents = load_data("data")
|
13 |
+
query_engine = get_gemini_embedding(documents)
|
14 |
+
return query_engine.query(question)
|
15 |
+
finally:
|
16 |
+
if os.path.exists(temp_path):
|
17 |
+
os.remove(temp_path)
|
18 |
+
|
19 |
+
|
20 |
+
def main():
|
21 |
+
st.set_page_config(page_title="Document Q&A Assistant")
|
22 |
+
st.title("Smart Document Question-Answering")
|
23 |
+
|
24 |
+
# Create data directory if not exists
|
25 |
+
os.makedirs("data", exist_ok=True)
|
26 |
+
|
27 |
+
doc = st.file_uploader(
|
28 |
+
"Upload your document (PDF, CSV, or TXT)", type=["pdf", "csv", "txt"]
|
29 |
+
)
|
30 |
+
|
31 |
+
question = st.text_input(
|
32 |
+
"What would you like to know about your document?",
|
33 |
+
placeholder="Enter your question here...",
|
34 |
+
)
|
35 |
+
|
36 |
+
if st.button("Get Answer"):
|
37 |
+
if not doc:
|
38 |
+
st.error("Please upload a document first.")
|
39 |
+
return
|
40 |
+
if not question:
|
41 |
+
st.error("Please enter a question.")
|
42 |
+
return
|
43 |
+
|
44 |
+
with st.spinner("Analyzing your document..."):
|
45 |
+
response = process_document(doc, question)
|
46 |
+
st.write(response.response)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-index
|
2 |
+
google-generativeai
|
3 |
+
llama-index-llms-gemini
|
4 |
+
pypdf
|
5 |
+
python-dotenv
|
6 |
+
llama-index-embeddings-gemini
|
7 |
+
streamlit
|
utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings
|
2 |
+
from llama_index.core.node_parser import SentenceSplitter
|
3 |
+
from llama_index.embeddings.gemini import GeminiEmbedding
|
4 |
+
from llama_index.llms.gemini import Gemini
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
|
8 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
|
14 |
+
def load_data(data_path: str) -> list[str]:
|
15 |
+
"""
|
16 |
+
Load documents from a directory.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
data_path (str): Path to the directory containing documents
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
list[str]: List of loaded documents or False if loading fails
|
23 |
+
"""
|
24 |
+
try:
|
25 |
+
logger.info(f"Loading documents from {data_path}")
|
26 |
+
loader = SimpleDirectoryReader(data_path)
|
27 |
+
documents = loader.load_data()
|
28 |
+
logger.info(f"Successfully loaded {len(documents)} documents")
|
29 |
+
return documents
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"Failed to load data: {str(e)}")
|
32 |
+
return False
|
33 |
+
|
34 |
+
def get_gemini_embedding(documents: str):
|
35 |
+
"""
|
36 |
+
Create a query engine using Gemini embeddings.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
documents (str): Documents to process
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
QueryEngine: Configured query engine or False if setup fails
|
43 |
+
"""
|
44 |
+
try:
|
45 |
+
logger.info("Initializing Gemini embedding model and LLM")
|
46 |
+
gemini_embedding_model = GeminiEmbedding(model_name="models/embedding-001")
|
47 |
+
llm = Gemini(model="models/gemini-1.5-flash", api_key=GEMINI_API_KEY)
|
48 |
+
|
49 |
+
# Configure global settings
|
50 |
+
Settings.llm = llm
|
51 |
+
Settings.embed_model = gemini_embedding_model
|
52 |
+
Settings.node_parser = SentenceSplitter(chunk_size=1000, chunk_overlap=20)
|
53 |
+
|
54 |
+
logger.info("Creating vector store index")
|
55 |
+
index = VectorStoreIndex.from_documents(
|
56 |
+
documents=documents,
|
57 |
+
embed_model=gemini_embedding_model
|
58 |
+
)
|
59 |
+
|
60 |
+
logger.info("Creating query engine")
|
61 |
+
return index.as_query_engine()
|
62 |
+
except Exception as e:
|
63 |
+
logger.error(f"Failed to setup Gemini embedding: {str(e)}")
|
64 |
+
return False
|