Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tempfile | |
from transformers import MT5ForConditionalGeneration, MT5Tokenizer,VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_name = "SeyedAli/English-to-Persian-Translation-mT5-V1" | |
translation_tokenizer = MT5Tokenizer.from_pretrained(model_name) | |
translation_model = MT5ForConditionalGeneration.from_pretrained(model_name) | |
translation_model=translation_model.to(device) | |
def run_transaltion_model(input_string, **generator_args): | |
input_ids = translation_tokenizer.encode(input_string, return_tensors="pt") | |
res = translation_model.generate(input_ids, **generator_args) | |
output = translation_tokenizer.batch_decode(res, skip_special_tokens=True) | |
return output | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
model=model.to(device) | |
max_length = 32 | |
num_beams = 4 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def predict_step(image_paths): | |
images = [] | |
for image_path in image_paths: | |
i_image = Image.open(image_path) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
images.append(i_image) | |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return run_transaltion_model(preds[0])[0] | |
def ImageCaptioning(image): | |
with tempfile.NamedTemporaryFile(suffix=".png") as temp_image_file: | |
# Copy the contents of the uploaded image file to the temporary file | |
Image.fromarray(image).save(temp_image_file.name) | |
# Load the image file using Pillow | |
caption=predict_step([temp_image_file.name]) | |
return caption | |
iface = gr.Interface(fn=ImageCaptioning, inputs="image", outputs="text") | |
iface.launch(share=False) |