Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,18 +7,15 @@ from transformers import ViTImageProcessor,pipeline
|
|
7 |
model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT')
|
8 |
|
9 |
def FoodClassification(image):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
#output=pipline(model(Image.open(desiredObject), return_tensors='pt'))
|
20 |
-
output=pipline(image, return_tensors='pt')
|
21 |
-
return output
|
22 |
|
23 |
iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text")
|
24 |
iface.launch(share=False)
|
|
|
7 |
model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT')
|
8 |
|
9 |
def FoodClassification(image):
|
10 |
+
with tempfile.NamedTemporaryFile(suffix=".png") as temp_audio_file:
|
11 |
+
# Copy the contents of the uploaded audio file to the temporary file
|
12 |
+
temp_image_file.write(open(image, "rb").read())
|
13 |
+
temp_image_file.flush()
|
14 |
+
# Load the image file using torchvision
|
15 |
+
image = read_image(temp_image_file.name)
|
16 |
+
pipline = pipeline(task="image-classification", model=model)
|
17 |
+
output=pipline(image, return_tensors='pt')
|
18 |
+
return output
|
|
|
|
|
|
|
19 |
|
20 |
iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text")
|
21 |
iface.launch(share=False)
|