|
from __future__ import annotations |
|
|
|
import copy |
|
import logging |
|
import re |
|
from abc import ABC, abstractmethod |
|
from collections.abc import Callable, Collection, Iterable, Sequence, Set |
|
from dataclasses import dataclass |
|
from typing import ( |
|
Any, |
|
Literal, |
|
Optional, |
|
TypedDict, |
|
TypeVar, |
|
Union, |
|
) |
|
|
|
from core.rag.models.document import BaseDocumentTransformer, Document |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
TS = TypeVar("TS", bound="TextSplitter") |
|
|
|
|
|
def _split_text_with_regex(text: str, separator: str, keep_separator: bool) -> list[str]: |
|
|
|
if separator: |
|
if keep_separator: |
|
|
|
_splits = re.split(f"({re.escape(separator)})", text) |
|
splits = [_splits[i - 1] + _splits[i] for i in range(1, len(_splits), 2)] |
|
if len(_splits) % 2 != 0: |
|
splits += _splits[-1:] |
|
else: |
|
splits = re.split(separator, text) |
|
else: |
|
splits = list(text) |
|
return [s for s in splits if (s not in {"", "\n"})] |
|
|
|
|
|
class TextSplitter(BaseDocumentTransformer, ABC): |
|
"""Interface for splitting text into chunks.""" |
|
|
|
def __init__( |
|
self, |
|
chunk_size: int = 4000, |
|
chunk_overlap: int = 200, |
|
length_function: Callable[[str], int] = len, |
|
keep_separator: bool = False, |
|
add_start_index: bool = False, |
|
) -> None: |
|
"""Create a new TextSplitter. |
|
|
|
Args: |
|
chunk_size: Maximum size of chunks to return |
|
chunk_overlap: Overlap in characters between chunks |
|
length_function: Function that measures the length of given chunks |
|
keep_separator: Whether to keep the separator in the chunks |
|
add_start_index: If `True`, includes chunk's start index in metadata |
|
""" |
|
if chunk_overlap > chunk_size: |
|
raise ValueError( |
|
f"Got a larger chunk overlap ({chunk_overlap}) than chunk size ({chunk_size}), should be smaller." |
|
) |
|
self._chunk_size = chunk_size |
|
self._chunk_overlap = chunk_overlap |
|
self._length_function = length_function |
|
self._keep_separator = keep_separator |
|
self._add_start_index = add_start_index |
|
|
|
@abstractmethod |
|
def split_text(self, text: str) -> list[str]: |
|
"""Split text into multiple components.""" |
|
|
|
def create_documents(self, texts: list[str], metadatas: Optional[list[dict]] = None) -> list[Document]: |
|
"""Create documents from a list of texts.""" |
|
_metadatas = metadatas or [{}] * len(texts) |
|
documents = [] |
|
for i, text in enumerate(texts): |
|
index = -1 |
|
for chunk in self.split_text(text): |
|
metadata = copy.deepcopy(_metadatas[i]) |
|
if self._add_start_index: |
|
index = text.find(chunk, index + 1) |
|
metadata["start_index"] = index |
|
new_doc = Document(page_content=chunk, metadata=metadata) |
|
documents.append(new_doc) |
|
return documents |
|
|
|
def split_documents(self, documents: Iterable[Document]) -> list[Document]: |
|
"""Split documents.""" |
|
texts, metadatas = [], [] |
|
for doc in documents: |
|
texts.append(doc.page_content) |
|
metadatas.append(doc.metadata) |
|
return self.create_documents(texts, metadatas=metadatas) |
|
|
|
def _join_docs(self, docs: list[str], separator: str) -> Optional[str]: |
|
text = separator.join(docs) |
|
text = text.strip() |
|
if text == "": |
|
return None |
|
else: |
|
return text |
|
|
|
def _merge_splits(self, splits: Iterable[str], separator: str, lengths: list[int]) -> list[str]: |
|
|
|
|
|
separator_len = self._length_function(separator) |
|
|
|
docs = [] |
|
current_doc: list[str] = [] |
|
total = 0 |
|
index = 0 |
|
for d in splits: |
|
_len = lengths[index] |
|
if total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size: |
|
if total > self._chunk_size: |
|
logger.warning( |
|
f"Created a chunk of size {total}, which is longer than the specified {self._chunk_size}" |
|
) |
|
if len(current_doc) > 0: |
|
doc = self._join_docs(current_doc, separator) |
|
if doc is not None: |
|
docs.append(doc) |
|
|
|
|
|
|
|
while total > self._chunk_overlap or ( |
|
total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 |
|
): |
|
total -= self._length_function(current_doc[0]) + (separator_len if len(current_doc) > 1 else 0) |
|
current_doc = current_doc[1:] |
|
current_doc.append(d) |
|
total += _len + (separator_len if len(current_doc) > 1 else 0) |
|
index += 1 |
|
doc = self._join_docs(current_doc, separator) |
|
if doc is not None: |
|
docs.append(doc) |
|
return docs |
|
|
|
@classmethod |
|
def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: |
|
"""Text splitter that uses HuggingFace tokenizer to count length.""" |
|
try: |
|
from transformers import PreTrainedTokenizerBase |
|
|
|
if not isinstance(tokenizer, PreTrainedTokenizerBase): |
|
raise ValueError("Tokenizer received was not an instance of PreTrainedTokenizerBase") |
|
|
|
def _huggingface_tokenizer_length(text: str) -> int: |
|
return len(tokenizer.encode(text)) |
|
|
|
except ImportError: |
|
raise ValueError( |
|
"Could not import transformers python package. Please install it with `pip install transformers`." |
|
) |
|
return cls(length_function=_huggingface_tokenizer_length, **kwargs) |
|
|
|
@classmethod |
|
def from_tiktoken_encoder( |
|
cls: type[TS], |
|
encoding_name: str = "gpt2", |
|
model_name: Optional[str] = None, |
|
allowed_special: Union[Literal["all"], Set[str]] = set(), |
|
disallowed_special: Union[Literal["all"], Collection[str]] = "all", |
|
**kwargs: Any, |
|
) -> TS: |
|
"""Text splitter that uses tiktoken encoder to count length.""" |
|
try: |
|
import tiktoken |
|
except ImportError: |
|
raise ImportError( |
|
"Could not import tiktoken python package. " |
|
"This is needed in order to calculate max_tokens_for_prompt. " |
|
"Please install it with `pip install tiktoken`." |
|
) |
|
|
|
if model_name is not None: |
|
enc = tiktoken.encoding_for_model(model_name) |
|
else: |
|
enc = tiktoken.get_encoding(encoding_name) |
|
|
|
def _tiktoken_encoder(text: str) -> int: |
|
return len( |
|
enc.encode( |
|
text, |
|
allowed_special=allowed_special, |
|
disallowed_special=disallowed_special, |
|
) |
|
) |
|
|
|
if issubclass(cls, TokenTextSplitter): |
|
extra_kwargs = { |
|
"encoding_name": encoding_name, |
|
"model_name": model_name, |
|
"allowed_special": allowed_special, |
|
"disallowed_special": disallowed_special, |
|
} |
|
kwargs = {**kwargs, **extra_kwargs} |
|
|
|
return cls(length_function=_tiktoken_encoder, **kwargs) |
|
|
|
def transform_documents(self, documents: Sequence[Document], **kwargs: Any) -> Sequence[Document]: |
|
"""Transform sequence of documents by splitting them.""" |
|
return self.split_documents(list(documents)) |
|
|
|
async def atransform_documents(self, documents: Sequence[Document], **kwargs: Any) -> Sequence[Document]: |
|
"""Asynchronously transform a sequence of documents by splitting them.""" |
|
raise NotImplementedError |
|
|
|
|
|
class CharacterTextSplitter(TextSplitter): |
|
"""Splitting text that looks at characters.""" |
|
|
|
def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None: |
|
"""Create a new TextSplitter.""" |
|
super().__init__(**kwargs) |
|
self._separator = separator |
|
|
|
def split_text(self, text: str) -> list[str]: |
|
"""Split incoming text and return chunks.""" |
|
|
|
splits = _split_text_with_regex(text, self._separator, self._keep_separator) |
|
_separator = "" if self._keep_separator else self._separator |
|
_good_splits_lengths = [] |
|
for split in splits: |
|
_good_splits_lengths.append(self._length_function(split)) |
|
return self._merge_splits(splits, _separator, _good_splits_lengths) |
|
|
|
|
|
class LineType(TypedDict): |
|
"""Line type as typed dict.""" |
|
|
|
metadata: dict[str, str] |
|
content: str |
|
|
|
|
|
class HeaderType(TypedDict): |
|
"""Header type as typed dict.""" |
|
|
|
level: int |
|
name: str |
|
data: str |
|
|
|
|
|
class MarkdownHeaderTextSplitter: |
|
"""Splitting markdown files based on specified headers.""" |
|
|
|
def __init__(self, headers_to_split_on: list[tuple[str, str]], return_each_line: bool = False): |
|
"""Create a new MarkdownHeaderTextSplitter. |
|
|
|
Args: |
|
headers_to_split_on: Headers we want to track |
|
return_each_line: Return each line w/ associated headers |
|
""" |
|
|
|
self.return_each_line = return_each_line |
|
|
|
|
|
self.headers_to_split_on = sorted(headers_to_split_on, key=lambda split: len(split[0]), reverse=True) |
|
|
|
def aggregate_lines_to_chunks(self, lines: list[LineType]) -> list[Document]: |
|
"""Combine lines with common metadata into chunks |
|
Args: |
|
lines: Line of text / associated header metadata |
|
""" |
|
aggregated_chunks: list[LineType] = [] |
|
|
|
for line in lines: |
|
if aggregated_chunks and aggregated_chunks[-1]["metadata"] == line["metadata"]: |
|
|
|
|
|
|
|
aggregated_chunks[-1]["content"] += " \n" + line["content"] |
|
else: |
|
|
|
aggregated_chunks.append(line) |
|
|
|
return [Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in aggregated_chunks] |
|
|
|
def split_text(self, text: str) -> list[Document]: |
|
"""Split markdown file |
|
Args: |
|
text: Markdown file""" |
|
|
|
|
|
lines = text.split("\n") |
|
|
|
lines_with_metadata: list[LineType] = [] |
|
|
|
current_content: list[str] = [] |
|
current_metadata: dict[str, str] = {} |
|
|
|
|
|
header_stack: list[HeaderType] = [] |
|
initial_metadata: dict[str, str] = {} |
|
|
|
for line in lines: |
|
stripped_line = line.strip() |
|
|
|
for sep, name in self.headers_to_split_on: |
|
|
|
if stripped_line.startswith(sep) and ( |
|
|
|
|
|
len(stripped_line) == len(sep) or stripped_line[len(sep)] == " " |
|
): |
|
|
|
if name is not None: |
|
|
|
current_header_level = sep.count("#") |
|
|
|
|
|
while header_stack and header_stack[-1]["level"] >= current_header_level: |
|
|
|
|
|
popped_header = header_stack.pop() |
|
|
|
|
|
if popped_header["name"] in initial_metadata: |
|
initial_metadata.pop(popped_header["name"]) |
|
|
|
|
|
header: HeaderType = { |
|
"level": current_header_level, |
|
"name": name, |
|
"data": stripped_line[len(sep) :].strip(), |
|
} |
|
header_stack.append(header) |
|
|
|
initial_metadata[name] = header["data"] |
|
|
|
|
|
|
|
if current_content: |
|
lines_with_metadata.append( |
|
{ |
|
"content": "\n".join(current_content), |
|
"metadata": current_metadata.copy(), |
|
} |
|
) |
|
current_content.clear() |
|
|
|
break |
|
else: |
|
if stripped_line: |
|
current_content.append(stripped_line) |
|
elif current_content: |
|
lines_with_metadata.append( |
|
{ |
|
"content": "\n".join(current_content), |
|
"metadata": current_metadata.copy(), |
|
} |
|
) |
|
current_content.clear() |
|
|
|
current_metadata = initial_metadata.copy() |
|
|
|
if current_content: |
|
lines_with_metadata.append({"content": "\n".join(current_content), "metadata": current_metadata}) |
|
|
|
|
|
|
|
if not self.return_each_line: |
|
return self.aggregate_lines_to_chunks(lines_with_metadata) |
|
else: |
|
return [ |
|
Document(page_content=chunk["content"], metadata=chunk["metadata"]) for chunk in lines_with_metadata |
|
] |
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class Tokenizer: |
|
chunk_overlap: int |
|
tokens_per_chunk: int |
|
decode: Callable[[list[int]], str] |
|
encode: Callable[[str], list[int]] |
|
|
|
|
|
def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]: |
|
"""Split incoming text and return chunks using tokenizer.""" |
|
splits: list[str] = [] |
|
input_ids = tokenizer.encode(text) |
|
start_idx = 0 |
|
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) |
|
chunk_ids = input_ids[start_idx:cur_idx] |
|
while start_idx < len(input_ids): |
|
splits.append(tokenizer.decode(chunk_ids)) |
|
start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap |
|
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids)) |
|
chunk_ids = input_ids[start_idx:cur_idx] |
|
return splits |
|
|
|
|
|
class TokenTextSplitter(TextSplitter): |
|
"""Splitting text to tokens using model tokenizer.""" |
|
|
|
def __init__( |
|
self, |
|
encoding_name: str = "gpt2", |
|
model_name: Optional[str] = None, |
|
allowed_special: Union[Literal["all"], Set[str]] = set(), |
|
disallowed_special: Union[Literal["all"], Collection[str]] = "all", |
|
**kwargs: Any, |
|
) -> None: |
|
"""Create a new TextSplitter.""" |
|
super().__init__(**kwargs) |
|
try: |
|
import tiktoken |
|
except ImportError: |
|
raise ImportError( |
|
"Could not import tiktoken python package. " |
|
"This is needed in order to for TokenTextSplitter. " |
|
"Please install it with `pip install tiktoken`." |
|
) |
|
|
|
if model_name is not None: |
|
enc = tiktoken.encoding_for_model(model_name) |
|
else: |
|
enc = tiktoken.get_encoding(encoding_name) |
|
self._tokenizer = enc |
|
self._allowed_special = allowed_special |
|
self._disallowed_special = disallowed_special |
|
|
|
def split_text(self, text: str) -> list[str]: |
|
def _encode(_text: str) -> list[int]: |
|
return self._tokenizer.encode( |
|
_text, |
|
allowed_special=self._allowed_special, |
|
disallowed_special=self._disallowed_special, |
|
) |
|
|
|
tokenizer = Tokenizer( |
|
chunk_overlap=self._chunk_overlap, |
|
tokens_per_chunk=self._chunk_size, |
|
decode=self._tokenizer.decode, |
|
encode=_encode, |
|
) |
|
|
|
return split_text_on_tokens(text=text, tokenizer=tokenizer) |
|
|
|
|
|
class RecursiveCharacterTextSplitter(TextSplitter): |
|
"""Splitting text by recursively look at characters. |
|
|
|
Recursively tries to split by different characters to find one |
|
that works. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
separators: Optional[list[str]] = None, |
|
keep_separator: bool = True, |
|
**kwargs: Any, |
|
) -> None: |
|
"""Create a new TextSplitter.""" |
|
super().__init__(keep_separator=keep_separator, **kwargs) |
|
self._separators = separators or ["\n\n", "\n", " ", ""] |
|
|
|
def _split_text(self, text: str, separators: list[str]) -> list[str]: |
|
final_chunks = [] |
|
separator = separators[-1] |
|
new_separators = [] |
|
|
|
for i, _s in enumerate(separators): |
|
if _s == "": |
|
separator = _s |
|
break |
|
if re.search(_s, text): |
|
separator = _s |
|
new_separators = separators[i + 1 :] |
|
break |
|
|
|
splits = _split_text_with_regex(text, separator, self._keep_separator) |
|
_good_splits = [] |
|
_good_splits_lengths = [] |
|
_separator = "" if self._keep_separator else separator |
|
|
|
for s in splits: |
|
s_len = self._length_function(s) |
|
if s_len < self._chunk_size: |
|
_good_splits.append(s) |
|
_good_splits_lengths.append(s_len) |
|
else: |
|
if _good_splits: |
|
merged_text = self._merge_splits(_good_splits, _separator, _good_splits_lengths) |
|
final_chunks.extend(merged_text) |
|
_good_splits = [] |
|
_good_splits_lengths = [] |
|
if not new_separators: |
|
final_chunks.append(s) |
|
else: |
|
other_info = self._split_text(s, new_separators) |
|
final_chunks.extend(other_info) |
|
|
|
if _good_splits: |
|
merged_text = self._merge_splits(_good_splits, _separator, _good_splits_lengths) |
|
final_chunks.extend(merged_text) |
|
|
|
return final_chunks |
|
|
|
def split_text(self, text: str) -> list[str]: |
|
return self._split_text(text, self._separators) |
|
|