Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,57 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
#
|
| 9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from peft import PeftModel
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
model_id = "deepseek-ai/deepseek-coder-1.3b-base"
|
| 7 |
+
lora_id = "Seunggg/lora-plant"
|
| 8 |
+
|
| 9 |
+
# 加载 tokenizer
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 11 |
+
|
| 12 |
+
# 加载基础模型,启用自动设备分配并脱载
|
| 13 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 14 |
+
model_id,
|
| 15 |
+
device_map="auto",
|
| 16 |
+
offload_folder="offload/",
|
| 17 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 18 |
+
trust_remote_code=True
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# 加载 LoRA adapter,同样启用脱载
|
| 22 |
+
model = PeftModel.from_pretrained(
|
| 23 |
+
base,
|
| 24 |
+
lora_id,
|
| 25 |
+
offload_folder="offload/",
|
| 26 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
model.eval()
|
| 30 |
+
|
| 31 |
+
# 生成 pipeline
|
| 32 |
+
from transformers import pipeline
|
| 33 |
+
pipe = pipeline(
|
| 34 |
+
"text-generation",
|
| 35 |
+
model=model,
|
| 36 |
+
tokenizer=tokenizer,
|
| 37 |
+
device_map="auto",
|
| 38 |
+
max_new_tokens=256
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
def respond(user_input):
|
| 42 |
+
if not user_input.strip():
|
| 43 |
+
return "请输入植物相关的问题 :)"
|
| 44 |
+
prompt = f"用户提问:{user_input}\n请用更人性化的语言生成建议,并推荐相关植物文献或资料。\n回答:"
|
| 45 |
+
result = pipe(prompt)
|
| 46 |
+
return result[0]["generated_text"]
|
| 47 |
+
|
| 48 |
+
# Gradio 界面
|
| 49 |
+
gr.Interface(
|
| 50 |
+
fn=respond,
|
| 51 |
+
inputs=gr.Textbox(lines=4, placeholder="在这里输入你的植物问题..."),
|
| 52 |
+
outputs="text",
|
| 53 |
+
title="🌱 植物助手 LoRA 版",
|
| 54 |
+
description="基于 DeepSeek 微调模型,提供植物养护建议和文献推荐。",
|
| 55 |
+
allow_flagging="never"
|
| 56 |
+
).launch()
|
| 57 |
+
|