Create mydatasets.py
Browse files- pdrt/mydatasets.py +128 -0
pdrt/mydatasets.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from typing import Any
|
| 5 |
+
from ast import literal_eval
|
| 6 |
+
from torch.utils.data import Dataset
|
| 7 |
+
|
| 8 |
+
import paths
|
| 9 |
+
from utils_ctc import sample_text_to_seq
|
| 10 |
+
|
| 11 |
+
######################################################
|
| 12 |
+
# Dataset Swin + CTC
|
| 13 |
+
######################################################
|
| 14 |
+
|
| 15 |
+
class myDatasetCTC(Dataset):
|
| 16 |
+
|
| 17 |
+
def __init__(self, partition = "train"):
|
| 18 |
+
|
| 19 |
+
self.processor = None
|
| 20 |
+
self.partition = partition
|
| 21 |
+
|
| 22 |
+
self.path_labels = paths.IMAGE_PATH
|
| 23 |
+
self.path_images = paths.GT_PATH
|
| 24 |
+
self.image_name_list = []
|
| 25 |
+
self.label_list = []
|
| 26 |
+
|
| 27 |
+
f = open(self.path_labels, 'r')
|
| 28 |
+
Lines = f.readlines()
|
| 29 |
+
|
| 30 |
+
for line in Lines:
|
| 31 |
+
line = line.strip().split()
|
| 32 |
+
self.image_name_list.append(self.path_images + line[0])
|
| 33 |
+
self.label_list.append(' '.join(line[1:]))
|
| 34 |
+
|
| 35 |
+
print("\tSamples Loaded: ", len(self.label_list), "\n-------------------------------------")
|
| 36 |
+
|
| 37 |
+
def set_processor(self, processor):
|
| 38 |
+
self.processor = processor
|
| 39 |
+
|
| 40 |
+
def __len__(self):
|
| 41 |
+
return len(self.image_name_list)
|
| 42 |
+
|
| 43 |
+
def __getitem__(self, idx):
|
| 44 |
+
|
| 45 |
+
with Image.open(self.image_name_list[idx]) as image:
|
| 46 |
+
image = image.convert("RGB")
|
| 47 |
+
image_tensor = np.array(image)
|
| 48 |
+
label = self.label_list[idx]
|
| 49 |
+
|
| 50 |
+
image_tensor = self.processor(
|
| 51 |
+
image_tensor,
|
| 52 |
+
random_padding=self.partitions == "train",
|
| 53 |
+
return_tensors="pt"
|
| 54 |
+
).pixel_values
|
| 55 |
+
image_tensor = image_tensor.squeeze()
|
| 56 |
+
|
| 57 |
+
# ctc
|
| 58 |
+
label_tensor = torch.tensor(sample_text_to_seq(label, self.text_to_seq))
|
| 59 |
+
|
| 60 |
+
return {"idx": idx, "img": image_tensor, "label": label_tensor, "raw_label": label}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
######################################################
|
| 64 |
+
# Dataset Vision Encoder-Decoder (VED)
|
| 65 |
+
######################################################
|
| 66 |
+
|
| 67 |
+
class myDatasetTransformerDecoder(Dataset):
|
| 68 |
+
def __init__(self, partition="train"):
|
| 69 |
+
|
| 70 |
+
self.max_length = paths.MAX_LENGTH
|
| 71 |
+
self.partition = partition
|
| 72 |
+
self.processor = None
|
| 73 |
+
self.ignore_id = -100
|
| 74 |
+
|
| 75 |
+
self.path_img = paths.IMAGE_PATH
|
| 76 |
+
self.path_transcriptions = paths.GT_PATH
|
| 77 |
+
self.image_name_list = []
|
| 78 |
+
self.label_list = []
|
| 79 |
+
|
| 80 |
+
template = '{"gt_parse": {"text_sequence" : '
|
| 81 |
+
with open(self.path_transcriptions, 'r') as file:
|
| 82 |
+
for line in file:
|
| 83 |
+
line = line.strip().split()
|
| 84 |
+
|
| 85 |
+
image_name = line[0]
|
| 86 |
+
label_gt = ' '.join(line[1:])
|
| 87 |
+
label_gt = template + '"' + label_gt + '"' + "}}"
|
| 88 |
+
|
| 89 |
+
self.image_name_list.append(self.path_img + image_name)
|
| 90 |
+
self.label_list.append(label_gt)
|
| 91 |
+
|
| 92 |
+
print("\tSamples Loaded: ", len(self.label_list))
|
| 93 |
+
|
| 94 |
+
def dict2token(self, obj: Any):
|
| 95 |
+
return obj["text_sequence"]
|
| 96 |
+
|
| 97 |
+
def set_processor(self, processor):
|
| 98 |
+
self.processor = processor
|
| 99 |
+
|
| 100 |
+
def __len__(self):
|
| 101 |
+
return len(self.image_name_list)
|
| 102 |
+
|
| 103 |
+
def __getitem__(self, idx):
|
| 104 |
+
|
| 105 |
+
image = Image.open(self.image_name_list[idx]).convert("RGB")
|
| 106 |
+
image_tensor = np.array(image)
|
| 107 |
+
|
| 108 |
+
pixel_values: torch.Tensor = self.processor(image_tensor, random_padding=self.partition == "train", return_tensors="pt").pixel_values[0]
|
| 109 |
+
|
| 110 |
+
label = self.label_list[idx]
|
| 111 |
+
label = literal_eval(label)
|
| 112 |
+
assert "gt_parse" in label and isinstance(label["gt_parse"], dict)
|
| 113 |
+
gt_dicts = [label["gt_parse"]]
|
| 114 |
+
target_sequence=[self.dict2token(gt_dict) + self.processor.tokenizer.eos_token for gt_dict in gt_dicts]
|
| 115 |
+
|
| 116 |
+
input_ids = self.processor.tokenizer(
|
| 117 |
+
target_sequence,
|
| 118 |
+
add_special_tokens=False,
|
| 119 |
+
max_length=self.max_length,
|
| 120 |
+
padding="max_length",
|
| 121 |
+
truncation=True,
|
| 122 |
+
return_tensors="pt",
|
| 123 |
+
)["input_ids"].squeeze(0)
|
| 124 |
+
|
| 125 |
+
labels = input_ids.clone()
|
| 126 |
+
labels[labels == self.processor.tokenizer.pad_token_id] = self.ignore_id # model doesn't need to predict pad token
|
| 127 |
+
|
| 128 |
+
return {"idx": idx, "img": pixel_values, "label": labels, "raw_label": target_sequence}
|