Spaces:
Sleeping
Sleeping
remove BEiT option
Browse files- app.py +1 -1
- closest_sample.py +2 -2
- explanations.py +3 -1
app.py
CHANGED
@@ -329,7 +329,7 @@ with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
|
|
329 |
|
330 |
with gr.Column():
|
331 |
model_name = gr.Dropdown(
|
332 |
-
["Mummified 170", "Rock 170","Fossils
|
333 |
multiselect=False,
|
334 |
value="Fossils 142", # default option
|
335 |
label="Model",
|
|
|
329 |
|
330 |
with gr.Column():
|
331 |
model_name = gr.Dropdown(
|
332 |
+
["Mummified 170", "Rock 170","Fossils 142"],#"Fossils BEiT" removed
|
333 |
multiselect=False,
|
334 |
value="Fossils 142", # default option
|
335 |
label="Model",
|
closest_sample.py
CHANGED
@@ -25,7 +25,7 @@ embedding_fossils = np.load('dataset/embedding_fossils_170_finer.npy')
|
|
25 |
|
26 |
fossils_pd= pd.read_csv('fossils_paths.csv')
|
27 |
|
28 |
-
def pca_distance(pca,sample,embedding,top_k):
|
29 |
"""
|
30 |
Args:
|
31 |
pca:fitted PCA model
|
@@ -38,7 +38,7 @@ def pca_distance(pca,sample,embedding,top_k):
|
|
38 |
all = pca.transform(embedding[:,-1])
|
39 |
distances = np.linalg.norm(all - s, axis=1)
|
40 |
sorted_indices = np.argsort(distances)
|
41 |
-
filtered_indices = sorted_indices[sorted_indices<=2852]
|
42 |
top_indices = np.concatenate([filtered_indices[:2], filtered_indices[3:top_k+1]])
|
43 |
return top_indices
|
44 |
|
|
|
25 |
|
26 |
fossils_pd= pd.read_csv('fossils_paths.csv')
|
27 |
|
28 |
+
def pca_distance(pca,sample,embedding,top_k):
|
29 |
"""
|
30 |
Args:
|
31 |
pca:fitted PCA model
|
|
|
38 |
all = pca.transform(embedding[:,-1])
|
39 |
distances = np.linalg.norm(all - s, axis=1)
|
40 |
sorted_indices = np.argsort(distances)
|
41 |
+
filtered_indices = sorted_indices[sorted_indices<=2852] # exclude general fossils, keep florissant only.
|
42 |
top_indices = np.concatenate([filtered_indices[:2], filtered_indices[3:top_k+1]])
|
43 |
return top_indices
|
44 |
|
explanations.py
CHANGED
@@ -128,8 +128,10 @@ def explain(model, input_image,explain_method,nb_samples,size=600, n_classes=171
|
|
128 |
phi = np.abs(explainer(X, Y))[0]
|
129 |
if len(phi.shape) == 3:
|
130 |
phi = np.mean(phi, -1)
|
|
|
|
|
131 |
show(X[0],output_size = size)
|
132 |
-
show(
|
133 |
# show(X[0][:,size_repetitions:2*size_repetitions,:])
|
134 |
# show(phi[:,size_repetitions:2*size_repetitions], p=1, alpha=0.4)
|
135 |
plt.savefig(f'phi_{e}{i}.png')
|
|
|
128 |
phi = np.abs(explainer(X, Y))[0]
|
129 |
if len(phi.shape) == 3:
|
130 |
phi = np.mean(phi, -1)
|
131 |
+
#apply Gaussian smoothing
|
132 |
+
phi_smoothed = cv2.GaussianBlur(phi, (5, 5), sigmaX=1.0, sigmaY=1.0)
|
133 |
show(X[0],output_size = size)
|
134 |
+
show(phi_smoothed, output_size = size,p=1, alpha=0.2)
|
135 |
# show(X[0][:,size_repetitions:2*size_repetitions,:])
|
136 |
# show(phi[:,size_repetitions:2*size_repetitions], p=1, alpha=0.4)
|
137 |
plt.savefig(f'phi_{e}{i}.png')
|