Sergiu2404's picture
refactor app.py and requirements.txt to specify gradio version
2b251bc
import gradio as gr
from transformers import AutoTokenizer
import torch
from tiny_finbert import TinyFinBERTRegressor, preprocess_texts
import os
import nltk
nltk.download('stopwords')
MODEL_DIR = "./saved_model"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
model = TinyFinBERTRegressor().to(DEVICE)
model.load_state_dict(torch.load(os.path.join(MODEL_DIR, "regressor_model.pt"), map_location=DEVICE))
model.eval()
def predict_sentiment(text):
print(f"[DEBUG] Input text: {text}")
processed = preprocess_texts([text])[0]
print(f"[DEBUG] Processed text: {processed}")
inputs = tokenizer(processed, return_tensors="pt", truncation=True, padding='max_length', max_length=128)
inputs = {k: v.to(DEVICE) for k, v in inputs.items() if k != "token_type_ids"}
with torch.no_grad():
score = model(**inputs)["score"].item()
print(f"[DEBUG] Score: {score}")
if score > 0.3:
interpretation = "positive"
elif score < -0.3:
interpretation = "negative"
else:
interpretation = "neutral"
return round(score, 4), interpretation
iface = gr.Interface(
fn=predict_sentiment,
inputs=gr.Textbox(label="Enter financial sentence"),
outputs=[
gr.Number(label="Sentiment Score"),
gr.Textbox(label="Interpretation")
],
title="TinyFinBERT Sentiment Analysis",
#allow_api=True,
api_name="predict"
)
#iface.launch()
iface.launch(
# server_name="0.0.0.0",
# share=True,
# #enable_queue=False
# max_threads=40,
# show_api=True
)