SerdarHelli commited on
Commit
7872317
1 Parent(s): d5c0caa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -6
app.py CHANGED
@@ -4,6 +4,8 @@ import plotly.graph_objects as go
4
  import sys
5
  import torch
6
  from huggingface_hub import hf_hub_download
 
 
7
 
8
  os.system("git clone https://github.com/luost26/diffusion-point-cloud")
9
  sys.path.append("diffusion-point-cloud")
@@ -17,8 +19,13 @@ chair=network_pkl=hf_hub_download("SerdarHelli/diffusion-point-cloud", filename=
17
 
18
  device='cuda' if torch.cuda.is_available() else 'cpu'
19
 
20
- ckpt_airplane = torch.load(airplane)
21
- ckpt_chair = torch.load(chair)
 
 
 
 
 
22
 
23
  def normalize_point_clouds(pcs,mode):
24
  if mode is None:
@@ -67,7 +74,6 @@ def generate(seed,value):
67
  else :
68
  ckpt=ckpt_airplane
69
 
70
- print(value)
71
  colors=(238, 75, 43)
72
  points=predict(seed,ckpt)
73
  num_points=points.shape[0]
@@ -90,14 +96,13 @@ def generate(seed,value):
90
  )
91
  )
92
  return fig
 
93
  markdown=f'''
94
  # Diffusion Probabilistic Models for 3D Point Cloud Generation
95
-
96
  [[The Paper](https://arxiv.org/abs/2103.01458)] [[Original Code](https://github.com/luost26/diffusion-point-cloud)]
97
-
98
  The space demo for our CVPR 2021 paper "Diffusion Probabilistic Models for 3D Point Cloud Generation".
99
 
100
-
101
  '''
102
  with gr.Blocks() as demo:
103
  with gr.Column():
 
4
  import sys
5
  import torch
6
  from huggingface_hub import hf_hub_download
7
+ import numpy as np
8
+ import random
9
 
10
  os.system("git clone https://github.com/luost26/diffusion-point-cloud")
11
  sys.path.append("diffusion-point-cloud")
 
19
 
20
  device='cuda' if torch.cuda.is_available() else 'cpu'
21
 
22
+ ckpt_airplane = torch.load(airplane,map_location=torch.device(device))
23
+ ckpt_chair = torch.load(chair,map_location=torch.device(device))
24
+
25
+ def seed_all(seed):
26
+ torch.manual_seed(seed)
27
+ np.random.seed(seed)
28
+ random.seed(seed)
29
 
30
  def normalize_point_clouds(pcs,mode):
31
  if mode is None:
 
74
  else :
75
  ckpt=ckpt_airplane
76
 
 
77
  colors=(238, 75, 43)
78
  points=predict(seed,ckpt)
79
  num_points=points.shape[0]
 
96
  )
97
  )
98
  return fig
99
+
100
  markdown=f'''
101
  # Diffusion Probabilistic Models for 3D Point Cloud Generation
 
102
  [[The Paper](https://arxiv.org/abs/2103.01458)] [[Original Code](https://github.com/luost26/diffusion-point-cloud)]
 
103
  The space demo for our CVPR 2021 paper "Diffusion Probabilistic Models for 3D Point Cloud Generation".
104
 
105
+ It is running on {device}
106
  '''
107
  with gr.Blocks() as demo:
108
  with gr.Column():