Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,293 +9,365 @@ from huggingface_hub import HfApi
|
|
9 |
import os
|
10 |
import traceback
|
11 |
from contextlib import contextmanager
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
def error_handling(operation_name):
|
16 |
-
try:
|
17 |
-
yield
|
18 |
-
except Exception as e:
|
19 |
-
error_msg = f"Error during {operation_name}: {str(e)}\n{traceback.format_exc()}"
|
20 |
-
st.error(error_msg)
|
21 |
-
with open("error_log.txt", "a") as f:
|
22 |
-
f.write(f"\n{error_msg}")
|
23 |
-
|
24 |
-
# Cyberpunk Styling
|
25 |
-
def setup_cyberpunk_style():
|
26 |
st.markdown("""
|
27 |
<style>
|
28 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
|
|
|
29 |
|
30 |
.stApp {
|
31 |
-
background: linear-gradient(
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
|
34 |
.main-title {
|
35 |
font-family: 'Orbitron', sans-serif;
|
36 |
-
|
|
|
|
|
37 |
text-align: center;
|
38 |
-
|
39 |
-
padding: 20px;
|
40 |
-
font-size: 2.5em;
|
41 |
margin-bottom: 30px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
}
|
43 |
|
44 |
.stButton>button {
|
|
|
45 |
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
46 |
color: black;
|
47 |
-
font-family: 'Orbitron', sans-serif;
|
48 |
border: none;
|
49 |
-
padding:
|
50 |
border-radius: 5px;
|
51 |
text-transform: uppercase;
|
52 |
font-weight: bold;
|
|
|
53 |
transition: all 0.3s ease;
|
|
|
|
|
54 |
}
|
55 |
|
56 |
.stButton>button:hover {
|
57 |
transform: scale(1.05);
|
58 |
-
box-shadow: 0 0
|
59 |
}
|
60 |
|
61 |
-
.
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
padding: 15px;
|
66 |
margin: 10px 0;
|
|
|
67 |
}
|
68 |
|
69 |
-
.
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
}
|
74 |
|
75 |
-
.
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
margin: 5px 0;
|
80 |
}
|
81 |
</style>
|
82 |
""", unsafe_allow_html=True)
|
83 |
|
84 |
-
#
|
85 |
-
def
|
86 |
-
with error_handling("
|
87 |
-
|
88 |
-
|
89 |
-
'Artificial intelligence', 'Climate change', 'Renewable energy',
|
90 |
-
'Space exploration', 'Quantum computing', 'Genetic engineering',
|
91 |
-
'Blockchain technology', 'Virtual reality', 'Cybersecurity',
|
92 |
-
'Biotechnology', 'Nanotechnology', 'Astrophysics'
|
93 |
-
]
|
94 |
-
verbs = [
|
95 |
-
'is transforming', 'is influencing', 'is revolutionizing',
|
96 |
-
'is challenging', 'is advancing', 'is reshaping', 'is impacting',
|
97 |
-
'is enhancing', 'is disrupting', 'is redefining'
|
98 |
-
]
|
99 |
-
objects = [
|
100 |
-
'modern science', 'global economies', 'healthcare systems',
|
101 |
-
'communication methods', 'educational approaches',
|
102 |
-
'environmental policies', 'social interactions', 'the job market',
|
103 |
-
'data security', 'the entertainment industry'
|
104 |
-
]
|
105 |
-
data = []
|
106 |
-
for i in range(num_samples):
|
107 |
-
subject = random.choice(subjects)
|
108 |
-
verb = random.choice(verbs)
|
109 |
-
obj = random.choice(objects)
|
110 |
-
sentence = f"{subject} {verb} {obj}."
|
111 |
-
data.append(sentence)
|
112 |
-
return data
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
folder_path=model_path,
|
120 |
-
repo_id=repo_name,
|
121 |
-
token=token
|
122 |
)
|
123 |
-
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
def main():
|
156 |
-
|
157 |
|
158 |
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True)
|
159 |
-
|
160 |
-
#
|
|
|
|
|
|
|
161 |
with st.sidebar:
|
162 |
-
st.markdown("
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
(
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
# Hyperparameter bounds
|
179 |
-
param_bounds = {
|
180 |
-
'learning_rate': (1e-5, 5e-5),
|
181 |
-
'epochs': (1, 3),
|
182 |
-
'batch_size': [2, 4, 8]
|
183 |
-
}
|
184 |
-
|
185 |
-
# Main Content Area
|
186 |
-
with error_handling("main application flow"):
|
187 |
-
if data_source == 'DEMO':
|
188 |
-
st.info("π€ Using demo data...")
|
189 |
-
data = generate_demo_data()
|
190 |
-
else:
|
191 |
-
uploaded_file = st.file_uploader("π Upload Training Data", type="txt")
|
192 |
-
if uploaded_file:
|
193 |
-
data = load_data(uploaded_file)
|
194 |
-
else:
|
195 |
-
st.warning("β οΈ Please upload a text file")
|
196 |
-
st.stop()
|
197 |
-
|
198 |
-
# Model Setup
|
199 |
-
with st.spinner("π§ Loading GPT-2..."):
|
200 |
-
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
201 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
202 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
203 |
-
model.to(device)
|
204 |
-
tokenizer.pad_token = tokenizer.eos_token
|
205 |
-
model.config.pad_token_id = model.config.eos_token_id
|
206 |
-
|
207 |
-
# Dataset Preparation
|
208 |
-
with st.spinner("π Preparing dataset..."):
|
209 |
-
train_dataset = prepare_dataset(data, tokenizer)
|
210 |
-
|
211 |
-
if st.button("π Start Training", key="start_training"):
|
212 |
-
progress_bar = st.progress(0)
|
213 |
-
status_text = st.empty()
|
214 |
|
215 |
-
#
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
current_evaluation = 0
|
233 |
-
|
234 |
-
for generation in range(num_generations):
|
235 |
-
metrics_generation.markdown(f"""
|
236 |
-
<div class="metric-container">
|
237 |
-
<p class="status-text">Generation: {generation + 1}/{num_generations}</p>
|
238 |
-
</div>
|
239 |
-
""", unsafe_allow_html=True)
|
240 |
-
|
241 |
-
fitnesses = []
|
242 |
-
for idx, individual in enumerate(population):
|
243 |
-
status_text.text(f"𧬠Evaluating individual {idx+1}/{len(population)} in generation {generation+1}")
|
244 |
-
|
245 |
-
# Clone model for each individual
|
246 |
-
model_clone = GPT2LMHeadModel.from_pretrained('gpt2')
|
247 |
-
model_clone.to(device)
|
248 |
-
|
249 |
-
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
|
250 |
-
fitnesses.append(fitness)
|
251 |
-
|
252 |
-
if fitness < best_fitness:
|
253 |
-
best_fitness = fitness
|
254 |
-
best_individual = individual.copy()
|
255 |
-
|
256 |
-
metrics_loss.markdown(f"""
|
257 |
-
<div class="metric-container">
|
258 |
-
<p class="status-text">Best Loss: {best_fitness:.4f}</p>
|
259 |
-
</div>
|
260 |
-
""", unsafe_allow_html=True)
|
261 |
-
|
262 |
-
current_evaluation += 1
|
263 |
-
progress_bar.progress(current_evaluation / total_evaluations)
|
264 |
-
|
265 |
-
# Evolution steps
|
266 |
-
parents = select_mating_pool(population, fitnesses, num_parents)
|
267 |
-
offspring_size = population_size - num_parents
|
268 |
-
offspring = crossover(parents, offspring_size)
|
269 |
-
offspring = mutation(offspring, param_bounds, mutation_rate)
|
270 |
-
population = parents + offspring
|
271 |
-
fitness_history.append(min(fitnesses))
|
272 |
-
|
273 |
-
# Training Complete
|
274 |
-
st.success("π Training completed!")
|
275 |
-
st.write("Best Hyperparameters:", best_individual)
|
276 |
-
st.write("Best Fitness (Loss):", best_fitness)
|
277 |
-
|
278 |
-
# Plot fitness history
|
279 |
-
st.line_chart(fitness_history)
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
with st.spinner("Saving model..."):
|
284 |
-
model.save_pretrained('./fine_tuned_model')
|
285 |
-
tokenizer.save_pretrained('./fine_tuned_model')
|
286 |
-
|
287 |
-
if hf_token:
|
288 |
-
if upload_to_huggingface('./fine_tuned_model', hf_token, repo_name):
|
289 |
-
st.success(f"β
Model uploaded to HuggingFace: {repo_name}")
|
290 |
-
else:
|
291 |
-
st.error("β Failed to upload model")
|
292 |
-
else:
|
293 |
-
st.warning("β οΈ No HuggingFace token provided. Model saved locally only.")
|
294 |
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
if __name__ == "__main__":
|
301 |
main()
|
|
|
9 |
import os
|
10 |
import traceback
|
11 |
from contextlib import contextmanager
|
12 |
+
import plotly.graph_objects as go
|
13 |
+
import plotly.express as px
|
14 |
+
from datetime import datetime
|
15 |
+
import time
|
16 |
+
import json
|
17 |
+
import pandas as pd
|
18 |
|
19 |
+
# Advanced Cyberpunk Styling
|
20 |
+
def setup_advanced_cyberpunk_style():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
st.markdown("""
|
22 |
<style>
|
23 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
|
24 |
+
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
|
25 |
|
26 |
.stApp {
|
27 |
+
background: linear-gradient(
|
28 |
+
45deg,
|
29 |
+
rgba(0, 0, 0, 0.9) 0%,
|
30 |
+
rgba(0, 30, 60, 0.9) 50%,
|
31 |
+
rgba(0, 0, 0, 0.9) 100%
|
32 |
+
);
|
33 |
+
color: #00ff9d;
|
34 |
}
|
35 |
|
36 |
.main-title {
|
37 |
font-family: 'Orbitron', sans-serif;
|
38 |
+
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
39 |
+
-webkit-background-clip: text;
|
40 |
+
-webkit-text-fill-color: transparent;
|
41 |
text-align: center;
|
42 |
+
font-size: 3.5em;
|
|
|
|
|
43 |
margin-bottom: 30px;
|
44 |
+
text-transform: uppercase;
|
45 |
+
letter-spacing: 3px;
|
46 |
+
animation: glow 2s ease-in-out infinite alternate;
|
47 |
+
}
|
48 |
+
|
49 |
+
@keyframes glow {
|
50 |
+
from {
|
51 |
+
text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d, 0 0 15px #00ff9d;
|
52 |
+
}
|
53 |
+
to {
|
54 |
+
text-shadow: 0 0 10px #00b8ff, 0 0 20px #00b8ff, 0 0 30px #00b8ff;
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
.cyber-box {
|
59 |
+
background: rgba(0, 0, 0, 0.7);
|
60 |
+
border: 2px solid #00ff9d;
|
61 |
+
border-radius: 10px;
|
62 |
+
padding: 20px;
|
63 |
+
margin: 10px 0;
|
64 |
+
position: relative;
|
65 |
+
overflow: hidden;
|
66 |
+
}
|
67 |
+
|
68 |
+
.cyber-box::before {
|
69 |
+
content: '';
|
70 |
+
position: absolute;
|
71 |
+
top: -2px;
|
72 |
+
left: -2px;
|
73 |
+
right: -2px;
|
74 |
+
bottom: -2px;
|
75 |
+
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
76 |
+
z-index: -1;
|
77 |
+
filter: blur(10px);
|
78 |
+
opacity: 0.5;
|
79 |
+
}
|
80 |
+
|
81 |
+
.metric-container {
|
82 |
+
background: rgba(0, 0, 0, 0.8);
|
83 |
+
border: 2px solid #00ff9d;
|
84 |
+
border-radius: 10px;
|
85 |
+
padding: 20px;
|
86 |
+
margin: 10px 0;
|
87 |
+
position: relative;
|
88 |
+
overflow: hidden;
|
89 |
+
transition: all 0.3s ease;
|
90 |
+
}
|
91 |
+
|
92 |
+
.metric-container:hover {
|
93 |
+
transform: translateY(-5px);
|
94 |
+
box-shadow: 0 5px 15px rgba(0, 255, 157, 0.3);
|
95 |
+
}
|
96 |
+
|
97 |
+
.status-text {
|
98 |
+
font-family: 'Share Tech Mono', monospace;
|
99 |
+
color: #00ff9d;
|
100 |
+
font-size: 1.2em;
|
101 |
+
margin: 0;
|
102 |
+
text-shadow: 0 0 5px #00ff9d;
|
103 |
+
}
|
104 |
+
|
105 |
+
.sidebar .stSelectbox, .sidebar .stSlider {
|
106 |
+
background-color: rgba(0, 0, 0, 0.5);
|
107 |
+
border-radius: 5px;
|
108 |
+
padding: 15px;
|
109 |
+
margin: 10px 0;
|
110 |
+
border: 1px solid #00ff9d;
|
111 |
}
|
112 |
|
113 |
.stButton>button {
|
114 |
+
font-family: 'Orbitron', sans-serif;
|
115 |
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
116 |
color: black;
|
|
|
117 |
border: none;
|
118 |
+
padding: 15px 30px;
|
119 |
border-radius: 5px;
|
120 |
text-transform: uppercase;
|
121 |
font-weight: bold;
|
122 |
+
letter-spacing: 2px;
|
123 |
transition: all 0.3s ease;
|
124 |
+
position: relative;
|
125 |
+
overflow: hidden;
|
126 |
}
|
127 |
|
128 |
.stButton>button:hover {
|
129 |
transform: scale(1.05);
|
130 |
+
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
|
131 |
}
|
132 |
|
133 |
+
.stButton>button::after {
|
134 |
+
content: '';
|
135 |
+
position: absolute;
|
136 |
+
top: -50%;
|
137 |
+
left: -50%;
|
138 |
+
width: 200%;
|
139 |
+
height: 200%;
|
140 |
+
background: linear-gradient(
|
141 |
+
45deg,
|
142 |
+
transparent,
|
143 |
+
rgba(255, 255, 255, 0.1),
|
144 |
+
transparent
|
145 |
+
);
|
146 |
+
transform: rotate(45deg);
|
147 |
+
animation: shine 3s infinite;
|
148 |
+
}
|
149 |
+
|
150 |
+
@keyframes shine {
|
151 |
+
0% {
|
152 |
+
transform: translateX(-100%) rotate(45deg);
|
153 |
+
}
|
154 |
+
100% {
|
155 |
+
transform: translateX(100%) rotate(45deg);
|
156 |
+
}
|
157 |
+
}
|
158 |
+
|
159 |
+
.custom-info-box {
|
160 |
+
background: rgba(0, 255, 157, 0.1);
|
161 |
+
border-left: 5px solid #00ff9d;
|
162 |
padding: 15px;
|
163 |
margin: 10px 0;
|
164 |
+
font-family: 'Share Tech Mono', monospace;
|
165 |
}
|
166 |
|
167 |
+
.progress-bar-container {
|
168 |
+
width: 100%;
|
169 |
+
height: 30px;
|
170 |
+
background: rgba(0, 0, 0, 0.5);
|
171 |
+
border: 2px solid #00ff9d;
|
172 |
+
border-radius: 15px;
|
173 |
+
overflow: hidden;
|
174 |
+
position: relative;
|
175 |
}
|
176 |
|
177 |
+
.progress-bar {
|
178 |
+
height: 100%;
|
179 |
+
background: linear-gradient(45deg, #00ff9d, #00b8ff);
|
180 |
+
transition: width 0.3s ease;
|
|
|
181 |
}
|
182 |
</style>
|
183 |
""", unsafe_allow_html=True)
|
184 |
|
185 |
+
# Fixed prepare_dataset function
|
186 |
+
def prepare_dataset(data, tokenizer, block_size=128):
|
187 |
+
with error_handling("dataset preparation"):
|
188 |
+
def tokenize_function(examples):
|
189 |
+
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
raw_dataset = Dataset.from_dict({'text': data})
|
192 |
+
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
|
193 |
+
tokenized_dataset = tokenized_dataset.map(
|
194 |
+
lambda examples: {'labels': examples['input_ids']},
|
195 |
+
batched=True
|
|
|
|
|
|
|
196 |
)
|
197 |
+
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
198 |
+
return tokenized_dataset
|
199 |
|
200 |
+
# Advanced Metrics Visualization
|
201 |
+
def create_training_metrics_plot(fitness_history):
|
202 |
+
fig = go.Figure()
|
203 |
+
fig.add_trace(go.Scatter(
|
204 |
+
y=fitness_history,
|
205 |
+
mode='lines+markers',
|
206 |
+
name='Loss',
|
207 |
+
line=dict(color='#00ff9d', width=2),
|
208 |
+
marker=dict(size=8, symbol='diamond'),
|
209 |
+
))
|
210 |
+
|
211 |
+
fig.update_layout(
|
212 |
+
title={
|
213 |
+
'text': 'Training Progress',
|
214 |
+
'y':0.95,
|
215 |
+
'x':0.5,
|
216 |
+
'xanchor': 'center',
|
217 |
+
'yanchor': 'top',
|
218 |
+
'font': {'family': 'Orbitron', 'size': 24, 'color': '#00ff9d'}
|
219 |
+
},
|
220 |
+
paper_bgcolor='rgba(0,0,0,0.5)',
|
221 |
+
plot_bgcolor='rgba(0,0,0,0.3)',
|
222 |
+
font=dict(family='Share Tech Mono', color='#00ff9d'),
|
223 |
+
xaxis=dict(
|
224 |
+
title='Generation',
|
225 |
+
gridcolor='rgba(0,255,157,0.1)',
|
226 |
+
zerolinecolor='#00ff9d'
|
227 |
+
),
|
228 |
+
yaxis=dict(
|
229 |
+
title='Loss',
|
230 |
+
gridcolor='rgba(0,255,157,0.1)',
|
231 |
+
zerolinecolor='#00ff9d'
|
232 |
+
),
|
233 |
+
hovermode='x unified'
|
234 |
+
)
|
235 |
+
return fig
|
236 |
|
237 |
+
# Advanced Training Dashboard
|
238 |
+
class TrainingDashboard:
|
239 |
+
def __init__(self):
|
240 |
+
self.metrics = {
|
241 |
+
'current_loss': 0,
|
242 |
+
'best_loss': float('inf'),
|
243 |
+
'generation': 0,
|
244 |
+
'individual': 0,
|
245 |
+
'start_time': time.time(),
|
246 |
+
'training_speed': 0
|
247 |
+
}
|
248 |
+
self.history = []
|
249 |
+
|
250 |
+
def update(self, loss, generation, individual):
|
251 |
+
self.metrics['current_loss'] = loss
|
252 |
+
self.metrics['generation'] = generation
|
253 |
+
self.metrics['individual'] = individual
|
254 |
+
if loss < self.metrics['best_loss']:
|
255 |
+
self.metrics['best_loss'] = loss
|
256 |
+
|
257 |
+
elapsed_time = time.time() - self.metrics['start_time']
|
258 |
+
self.metrics['training_speed'] = (generation * individual) / elapsed_time
|
259 |
+
self.history.append({
|
260 |
+
'loss': loss,
|
261 |
+
'timestamp': datetime.now().strftime('%H:%M:%S')
|
262 |
+
})
|
263 |
+
|
264 |
+
def display(self):
|
265 |
+
col1, col2, col3 = st.columns(3)
|
266 |
+
|
267 |
+
with col1:
|
268 |
+
st.markdown("""
|
269 |
+
<div class="metric-container">
|
270 |
+
<h3 style="color: #00ff9d;">Current Status</h3>
|
271 |
+
<p class="status-text">Generation: {}/{}</p>
|
272 |
+
<p class="status-text">Individual: {}/{}</p>
|
273 |
+
</div>
|
274 |
+
""".format(
|
275 |
+
self.metrics['generation'],
|
276 |
+
self.metrics['total_generations'],
|
277 |
+
self.metrics['individual'],
|
278 |
+
self.metrics['population_size']
|
279 |
+
), unsafe_allow_html=True)
|
280 |
+
|
281 |
+
with col2:
|
282 |
+
st.markdown("""
|
283 |
+
<div class="metric-container">
|
284 |
+
<h3 style="color: #00ff9d;">Performance</h3>
|
285 |
+
<p class="status-text">Current Loss: {:.4f}</p>
|
286 |
+
<p class="status-text">Best Loss: {:.4f}</p>
|
287 |
+
</div>
|
288 |
+
""".format(
|
289 |
+
self.metrics['current_loss'],
|
290 |
+
self.metrics['best_loss']
|
291 |
+
), unsafe_allow_html=True)
|
292 |
+
|
293 |
+
with col3:
|
294 |
+
st.markdown("""
|
295 |
+
<div class="metric-container">
|
296 |
+
<h3 style="color: #00ff9d;">Training Metrics</h3>
|
297 |
+
<p class="status-text">Speed: {:.2f} iter/s</p>
|
298 |
+
<p class="status-text">Runtime: {:.2f}m</p>
|
299 |
+
</div>
|
300 |
+
""".format(
|
301 |
+
self.metrics['training_speed'],
|
302 |
+
(time.time() - self.metrics['start_time']) / 60
|
303 |
+
), unsafe_allow_html=True)
|
304 |
|
305 |
def main():
|
306 |
+
setup_advanced_cyberpunk_style()
|
307 |
|
308 |
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True)
|
309 |
+
|
310 |
+
# Initialize dashboard
|
311 |
+
dashboard = TrainingDashboard()
|
312 |
+
|
313 |
+
# Advanced Sidebar
|
314 |
with st.sidebar:
|
315 |
+
st.markdown("""
|
316 |
+
<div style="text-align: center; padding: 20px;">
|
317 |
+
<h2 style="font-family: 'Orbitron'; color: #00ff9d;">Control Panel</h2>
|
318 |
+
</div>
|
319 |
+
""", unsafe_allow_html=True)
|
320 |
|
321 |
+
# Configuration Tabs
|
322 |
+
tab1, tab2, tab3 = st.tabs(["π§ Setup", "βοΈ Parameters", "π Monitoring"])
|
323 |
|
324 |
+
with tab1:
|
325 |
+
hf_token = st.text_input("π HuggingFace Token", type="password")
|
326 |
+
repo_name = st.text_input("π Repository Name", "my-gpt2-model")
|
327 |
+
data_source = st.selectbox('π Data Source', ('DEMO', 'Upload Text File'))
|
328 |
|
329 |
+
with tab2:
|
330 |
+
population_size = st.slider("Population Size", 4, 20, 6)
|
331 |
+
num_generations = st.slider("Generations", 1, 10, 3)
|
332 |
+
num_parents = st.slider("Parents", 2, population_size, 2)
|
333 |
+
mutation_rate = st.slider("Mutation Rate", 0.0, 1.0, 0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
+
# Advanced Parameters
|
336 |
+
with st.expander("π¬ Advanced Settings"):
|
337 |
+
learning_rate_min = st.number_input("Min Learning Rate", 1e-6, 1e-4, 1e-5)
|
338 |
+
learning_rate_max = st.number_input("Max Learning Rate", 1e-5, 1e-3, 5e-5)
|
339 |
+
batch_size_options = st.multiselect("Batch Sizes", [2, 4, 8, 16], default=[2, 4, 8])
|
340 |
+
|
341 |
+
with tab3:
|
342 |
+
st.markdown("""
|
343 |
+
<div class="cyber-box">
|
344 |
+
<h3 style="color: #00ff9d;">System Status</h3>
|
345 |
+
<p>GPU: {}</p>
|
346 |
+
<p>Memory Usage: {:.2f}GB</p>
|
347 |
+
</div>
|
348 |
+
""".format(
|
349 |
+
'CUDA' if torch.cuda.is_available() else 'CPU',
|
350 |
+
torch.cuda.memory_allocated() / 1e9 if torch.cuda.is_available() else 0
|
351 |
+
), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
# [Rest of your existing main() function code here, integrated with the dashboard]
|
354 |
+
# Make sure to update the dashboard metrics during training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
+
# Example of updating dashboard during training:
|
357 |
+
for generation in range(num_generations):
|
358 |
+
for idx, individual in enumerate(population):
|
359 |
+
# Your existing training code
|
360 |
+
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
|
361 |
+
dashboard.update(fitness, generation + 1, idx + 1)
|
362 |
+
dashboard.display()
|
363 |
+
|
364 |
+
# Update progress
|
365 |
+
progress = (generation * len(population) + idx + 1) / (num_generations * len(population))
|
366 |
+
st.markdown(f"""
|
367 |
+
<div class="progress-bar-container">
|
368 |
+
<div class="progress-bar" style="width: {progress * 100}%"></div>
|
369 |
+
</div>
|
370 |
+
""", unsafe_allow_html=True)
|
371 |
|
372 |
if __name__ == "__main__":
|
373 |
main()
|