reshinthadith commited on
Commit
4244b29
·
1 Parent(s): b5b884d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -100
app.py CHANGED
@@ -7,103 +7,103 @@ from torch.nn import functional as F
7
  import os
8
  token_key = os.environ.get("HF_ACCESS_TOKEN")
9
 
10
- if torch.cuda.is_available():
11
- m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16).cuda()
12
- tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
13
- else:
14
- m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16)
15
- tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
16
- generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
17
-
18
-
19
- start_message = """<|SYSTEM|># StableAssistant
20
- - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
21
- - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
22
- - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
23
- - StableAssistant will refuse to participate in anything that could harm a human."""
24
-
25
-
26
- class StopOnTokens(StoppingCriteria):
27
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
28
- stop_ids = [50278, 50279, 50277, 1, 0]
29
- for stop_id in stop_ids:
30
- if input_ids[0][-1] == stop_id:
31
- return True
32
- return False
33
-
34
-
35
- def contrastive_generate(text, bad_text):
36
- with torch.no_grad():
37
- if torch.cuda_is_available():
38
- tokens = tok(text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
39
- bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
40
- else:
41
- tokens = tok(text, return_tensors="pt")['input_ids'][:,:4096-1024]
42
- bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'][:,:4096-1024]
43
- history = None
44
- bad_history = None
45
- curr_output = list()
46
- for i in range(1024):
47
- out = m(tokens, past_key_values=history, use_cache=True)
48
- logits = out.logits
49
- history = out.past_key_values
50
- bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True)
51
- bad_logits = bad_out.logits
52
- bad_history = bad_out.past_key_values
53
- probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
54
- bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
55
- logits = torch.log(probs)
56
- bad_logits = torch.log(bad_probs)
57
- logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
58
- probs = F.softmax(logits)
59
- out = int(torch.multinomial(probs, 1))
60
- if out in [50278, 50279, 50277, 1, 0]:
61
- break
62
- else:
63
- curr_output.append(out)
64
- out = np.array([out])
65
- tokens = torch.from_numpy(np.array([out])).to(
66
- tokens.device)
67
- bad_tokens = torch.from_numpy(np.array([out])).to(
68
- tokens.device)
69
- return tok.decode(curr_output)
70
-
71
- def generate(text, bad_text=None):
72
- stop = StopOnTokens()
73
- result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
74
- return result[0]["generated_text"].replace(text, "")
75
-
76
-
77
- def user(user_message, history):
78
- return "", history + [[user_message, ""]]
79
-
80
-
81
- def bot(history, curr_system_message):
82
- messages = curr_system_message + "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history])
83
- output = generate(messages)
84
- history[-1][1] = output
85
- time.sleep(1)
86
- return history
87
-
88
-
89
- def system_update(msg):
90
- global curr_system_message
91
- curr_system_message = msg
92
-
93
-
94
- with gr.Blocks() as demo:
95
- gr.Markdown("###StableLM-tuned-Alpha-7B Chat")
96
- with gr.Row():
97
- with gr.Column():
98
- chatbot = gr.Chatbot([])
99
- clear = gr.Button("Clear")
100
- with gr.Column():
101
- system_msg = start_message#gr.Textbox(start_message, label="System Message", interactive=True)
102
- msg = gr.Textbox(label="Chat Message")
103
-
104
- msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
105
- bot, [chatbot, system_msg], chatbot
106
- )
107
- system_msg.change(system_update, system_msg, None, queue=False)
108
- clear.click(lambda: None, None, chatbot, queue=False)
109
- demo.launch(share=True)
 
7
  import os
8
  token_key = os.environ.get("HF_ACCESS_TOKEN")
9
 
10
+ # if torch.cuda.is_available():
11
+ # m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16).cuda()
12
+ # tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
13
+ # else:
14
+ # m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16)
15
+ # tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
16
+ # generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
17
+
18
+
19
+ # start_message = """<|SYSTEM|># StableAssistant
20
+ # - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
21
+ # - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
22
+ # - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
23
+ # - StableAssistant will refuse to participate in anything that could harm a human."""
24
+
25
+
26
+ # class StopOnTokens(StoppingCriteria):
27
+ # def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
28
+ # stop_ids = [50278, 50279, 50277, 1, 0]
29
+ # for stop_id in stop_ids:
30
+ # if input_ids[0][-1] == stop_id:
31
+ # return True
32
+ # return False
33
+
34
+
35
+ # def contrastive_generate(text, bad_text):
36
+ # with torch.no_grad():
37
+ # if torch.cuda_is_available():
38
+ # tokens = tok(text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
39
+ # bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
40
+ # else:
41
+ # tokens = tok(text, return_tensors="pt")['input_ids'][:,:4096-1024]
42
+ # bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'][:,:4096-1024]
43
+ # history = None
44
+ # bad_history = None
45
+ # curr_output = list()
46
+ # for i in range(1024):
47
+ # out = m(tokens, past_key_values=history, use_cache=True)
48
+ # logits = out.logits
49
+ # history = out.past_key_values
50
+ # bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True)
51
+ # bad_logits = bad_out.logits
52
+ # bad_history = bad_out.past_key_values
53
+ # probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
54
+ # bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
55
+ # logits = torch.log(probs)
56
+ # bad_logits = torch.log(bad_probs)
57
+ # logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
58
+ # probs = F.softmax(logits)
59
+ # out = int(torch.multinomial(probs, 1))
60
+ # if out in [50278, 50279, 50277, 1, 0]:
61
+ # break
62
+ # else:
63
+ # curr_output.append(out)
64
+ # out = np.array([out])
65
+ # tokens = torch.from_numpy(np.array([out])).to(
66
+ # tokens.device)
67
+ # bad_tokens = torch.from_numpy(np.array([out])).to(
68
+ # tokens.device)
69
+ # return tok.decode(curr_output)
70
+
71
+ # def generate(text, bad_text=None):
72
+ # stop = StopOnTokens()
73
+ # result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
74
+ # return result[0]["generated_text"].replace(text, "")
75
+
76
+
77
+ # def user(user_message, history):
78
+ # return "", history + [[user_message, ""]]
79
+
80
+
81
+ # def bot(history, curr_system_message):
82
+ # messages = curr_system_message + "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history])
83
+ # output = generate(messages)
84
+ # history[-1][1] = output
85
+ # time.sleep(1)
86
+ # return history
87
+
88
+
89
+ # def system_update(msg):
90
+ # global curr_system_message
91
+ # curr_system_message = msg
92
+
93
+
94
+ # with gr.Blocks() as demo:
95
+ # gr.Markdown("###StableLM-tuned-Alpha-7B Chat")
96
+ # with gr.Row():
97
+ # with gr.Column():
98
+ # chatbot = gr.Chatbot([])
99
+ # clear = gr.Button("Clear")
100
+ # with gr.Column():
101
+ # system_msg = start_message#gr.Textbox(start_message, label="System Message", interactive=True)
102
+ # msg = gr.Textbox(label="Chat Message")
103
+
104
+ # msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
105
+ # bot, [chatbot, system_msg], chatbot
106
+ # )
107
+ # system_msg.change(system_update, system_msg, None, queue=False)
108
+ # clear.click(lambda: None, None, chatbot, queue=False)
109
+ # demo.launch(share=True)