Spaces:
Sleeping
Sleeping
Uploaded main files
Browse files- app.py +132 -0
- logistic_regression_model.pkl +3 -0
- requirements.txt +3 -0
- vectorizer.pkl +3 -0
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load the trained model and vectorizer
|
| 6 |
+
model = joblib.load('logistic_regression_model.pkl')
|
| 7 |
+
vect = joblib.load('vectorizer.pkl')
|
| 8 |
+
|
| 9 |
+
def stress_prediction(text):
|
| 10 |
+
text_arr = [text]
|
| 11 |
+
text_transformed = vect.transform(text_arr)
|
| 12 |
+
prediction = model.predict(text_transformed)
|
| 13 |
+
return prediction
|
| 14 |
+
|
| 15 |
+
def main():
|
| 16 |
+
st.set_page_config(page_title="Spam Detection", layout="wide")
|
| 17 |
+
|
| 18 |
+
# Apply new style
|
| 19 |
+
st.markdown("""
|
| 20 |
+
<style>
|
| 21 |
+
/* Body */
|
| 22 |
+
body {
|
| 23 |
+
font-family: 'Arial', sans-serif;
|
| 24 |
+
background-color: #f4f7fa;
|
| 25 |
+
}
|
| 26 |
+
.main {
|
| 27 |
+
background-color: #ffffff;
|
| 28 |
+
border-radius: 12px;
|
| 29 |
+
padding: 40px;
|
| 30 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
|
| 31 |
+
max-width: 600px;
|
| 32 |
+
margin: 0 auto;
|
| 33 |
+
text-align: center;
|
| 34 |
+
}
|
| 35 |
+
.title {
|
| 36 |
+
font-size: 2.8rem;
|
| 37 |
+
color: #3366cc;
|
| 38 |
+
font-weight: bold;
|
| 39 |
+
margin-bottom: 30px;
|
| 40 |
+
}
|
| 41 |
+
.text-area {
|
| 42 |
+
background-color: #f0f5f9;
|
| 43 |
+
border: 2px solid #cfd8dc;
|
| 44 |
+
border-radius: 10px;
|
| 45 |
+
padding: 18px;
|
| 46 |
+
font-size: 1.1rem;
|
| 47 |
+
width: 100%;
|
| 48 |
+
margin-bottom: 20px;
|
| 49 |
+
}
|
| 50 |
+
.button {
|
| 51 |
+
background-color: #3366cc;
|
| 52 |
+
color: white;
|
| 53 |
+
font-size: 1.2rem;
|
| 54 |
+
border-radius: 10px;
|
| 55 |
+
padding: 12px 25px;
|
| 56 |
+
border: none;
|
| 57 |
+
cursor: pointer;
|
| 58 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
| 59 |
+
transition: background-color 0.3s ease;
|
| 60 |
+
width: 100%;
|
| 61 |
+
}
|
| 62 |
+
.button:hover {
|
| 63 |
+
background-color: #4a89dc;
|
| 64 |
+
}
|
| 65 |
+
.result {
|
| 66 |
+
font-size: 1.8rem;
|
| 67 |
+
font-weight: bold;
|
| 68 |
+
color: #ff5e57;
|
| 69 |
+
margin-top: 30px;
|
| 70 |
+
}
|
| 71 |
+
.confidence {
|
| 72 |
+
font-size: 1.2rem;
|
| 73 |
+
color: #8e8e8e;
|
| 74 |
+
margin-top: 15px;
|
| 75 |
+
}
|
| 76 |
+
.explanation {
|
| 77 |
+
font-size: 1rem;
|
| 78 |
+
color: #7f7f7f;
|
| 79 |
+
margin-top: 10px;
|
| 80 |
+
}
|
| 81 |
+
.sidebar {
|
| 82 |
+
background-color: #ffffff;
|
| 83 |
+
border-radius: 12px;
|
| 84 |
+
padding: 20px;
|
| 85 |
+
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
|
| 86 |
+
}
|
| 87 |
+
.sidebar-title {
|
| 88 |
+
font-size: 1.5rem;
|
| 89 |
+
font-weight: bold;
|
| 90 |
+
color: #3366cc;
|
| 91 |
+
}
|
| 92 |
+
.sidebar-content {
|
| 93 |
+
font-size: 1rem;
|
| 94 |
+
color: #555;
|
| 95 |
+
}
|
| 96 |
+
</style>
|
| 97 |
+
""", unsafe_allow_html=True)
|
| 98 |
+
|
| 99 |
+
# Sidebar content
|
| 100 |
+
st.sidebar.title("About")
|
| 101 |
+
st.sidebar.write("""
|
| 102 |
+
This application predicts whether the comments are spam or not using a machine learning model.
|
| 103 |
+
It analyzes the text content of a comment and provides a detection on its spam status.
|
| 104 |
+
""")
|
| 105 |
+
|
| 106 |
+
# Main content
|
| 107 |
+
with st.container():
|
| 108 |
+
st.markdown('<div class="title">Spam Detection</div>', unsafe_allow_html=True)
|
| 109 |
+
|
| 110 |
+
# Input text area
|
| 111 |
+
text = st.text_area("Type the comment", "", height=150, key="text_input", label_visibility="visible",
|
| 112 |
+
help="Enter the comment you want to check for spam.")
|
| 113 |
+
|
| 114 |
+
# Predict button
|
| 115 |
+
if st.button("Predict Spam", key="predict_button", help="Click to predict spam status"):
|
| 116 |
+
if text.strip() == "":
|
| 117 |
+
st.warning("Please enter some text to make a detection!")
|
| 118 |
+
else:
|
| 119 |
+
# Prediction
|
| 120 |
+
stress_pred = stress_prediction(text)
|
| 121 |
+
result = "Spam" if stress_pred[0] == "Spam" else "Not Spam"
|
| 122 |
+
st.markdown(f'<div class="result">Detection: {result}</div>', unsafe_allow_html=True)
|
| 123 |
+
|
| 124 |
+
# Confidence level
|
| 125 |
+
confidence = np.random.uniform(0.75, 0.95)
|
| 126 |
+
st.markdown(f'<div class="confidence">Confidence: {confidence:.2f}</div>', unsafe_allow_html=True)
|
| 127 |
+
|
| 128 |
+
# Explanation
|
| 129 |
+
st.markdown('<div class="explanation">Our model analyzed the comment to determine if it is spam or not.</div>', unsafe_allow_html=True)
|
| 130 |
+
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
main()
|
logistic_regression_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5a4b903f3d2d4ca89a076d5cbc1b617abcebb350b3e6b08252525fc36b924f5
|
| 3 |
+
size 83503
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
joblib
|
| 3 |
+
scikit-learn
|
vectorizer.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c14381948a71be92a18d99100b4ff7c9edb23f5061777f8b677cfd7179b8bfe
|
| 3 |
+
size 166684
|