Spaces:
Sleeping
Sleeping
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
model = SentenceTransformer('sentence-transformers/LaBSE') | |
app = FastAPI() | |
class QuestionCheckRequestDTO(BaseModel): | |
correctAnswer: str | |
givenAnswer: str | |
def home(): | |
return {"message": "All Ok!"} | |
def checkAnswer(item: QuestionCheckRequestDTO): | |
texts = [] | |
texts.append(item.correctAnswer) | |
texts.append(item.givenAnswer) | |
embeddings = model.encode(texts, convert_to_tensor=True) | |
sim = np.inner(embeddings[0], embeddings[1]) | |
return {"output": str(sim)} |