Spaces:
Runtime error
Runtime error
SemanticTypography
commited on
Commit
•
7cbaeb9
1
Parent(s):
559bee8
New Release
Browse files- LICENSE +437 -0
- README.md +7 -5
- app.py +357 -0
- code/bezier.py +122 -0
- code/config/base.yaml +50 -0
- code/data/fonts/Bell MT.ttf +0 -0
- code/data/fonts/DeliusUnicase-Regular.ttf +0 -0
- code/data/fonts/HobeauxRococeaux-Sherman.ttf +0 -0
- code/data/fonts/IndieFlower-Regular.ttf +0 -0
- code/data/fonts/JosefinSans-Light.ttf +0 -0
- code/data/fonts/KaushanScript-Regular.ttf +0 -0
- code/data/fonts/LuckiestGuy-Regular.ttf +0 -0
- code/data/fonts/Noteworthy-Bold.ttf +0 -0
- code/data/fonts/Quicksand.ttf +0 -0
- code/data/fonts/Saira-Regular.ttf +0 -0
- code/losses.py +180 -0
- code/save_svg.py +155 -0
- code/ttf.py +264 -0
- code/utils.py +221 -0
- images/DeliusUnicase-Regular.png +0 -0
- images/HobeauxRococeaux-Sherman.png +0 -0
- images/IndieFlower-Regular.png +0 -0
- images/KaushanScript-Regular.png +0 -0
- images/LuckiestGuy-Regular.png +0 -0
- images/Noteworthy-Bold.png +0 -0
- images/Quicksand.png +0 -0
- images/Saira-Regular.png +0 -0
- packages.txt +1 -0
- requirements.txt +27 -0
LICENSE
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Attribution-NonCommercial-ShareAlike 4.0 International
|
2 |
+
|
3 |
+
=======================================================================
|
4 |
+
|
5 |
+
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
6 |
+
does not provide legal services or legal advice. Distribution of
|
7 |
+
Creative Commons public licenses does not create a lawyer-client or
|
8 |
+
other relationship. Creative Commons makes its licenses and related
|
9 |
+
information available on an "as-is" basis. Creative Commons gives no
|
10 |
+
warranties regarding its licenses, any material licensed under their
|
11 |
+
terms and conditions, or any related information. Creative Commons
|
12 |
+
disclaims all liability for damages resulting from their use to the
|
13 |
+
fullest extent possible.
|
14 |
+
|
15 |
+
Using Creative Commons Public Licenses
|
16 |
+
|
17 |
+
Creative Commons public licenses provide a standard set of terms and
|
18 |
+
conditions that creators and other rights holders may use to share
|
19 |
+
original works of authorship and other material subject to copyright
|
20 |
+
and certain other rights specified in the public license below. The
|
21 |
+
following considerations are for informational purposes only, are not
|
22 |
+
exhaustive, and do not form part of our licenses.
|
23 |
+
|
24 |
+
Considerations for licensors: Our public licenses are
|
25 |
+
intended for use by those authorized to give the public
|
26 |
+
permission to use material in ways otherwise restricted by
|
27 |
+
copyright and certain other rights. Our licenses are
|
28 |
+
irrevocable. Licensors should read and understand the terms
|
29 |
+
and conditions of the license they choose before applying it.
|
30 |
+
Licensors should also secure all rights necessary before
|
31 |
+
applying our licenses so that the public can reuse the
|
32 |
+
material as expected. Licensors should clearly mark any
|
33 |
+
material not subject to the license. This includes other CC-
|
34 |
+
licensed material, or material used under an exception or
|
35 |
+
limitation to copyright. More considerations for licensors:
|
36 |
+
wiki.creativecommons.org/Considerations_for_licensors
|
37 |
+
|
38 |
+
Considerations for the public: By using one of our public
|
39 |
+
licenses, a licensor grants the public permission to use the
|
40 |
+
licensed material under specified terms and conditions. If
|
41 |
+
the licensor's permission is not necessary for any reason--for
|
42 |
+
example, because of any applicable exception or limitation to
|
43 |
+
copyright--then that use is not regulated by the license. Our
|
44 |
+
licenses grant only permissions under copyright and certain
|
45 |
+
other rights that a licensor has authority to grant. Use of
|
46 |
+
the licensed material may still be restricted for other
|
47 |
+
reasons, including because others have copyright or other
|
48 |
+
rights in the material. A licensor may make special requests,
|
49 |
+
such as asking that all changes be marked or described.
|
50 |
+
Although not required by our licenses, you are encouraged to
|
51 |
+
respect those requests where reasonable. More considerations
|
52 |
+
for the public:
|
53 |
+
wiki.creativecommons.org/Considerations_for_licensees
|
54 |
+
|
55 |
+
=======================================================================
|
56 |
+
|
57 |
+
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
|
58 |
+
Public License
|
59 |
+
|
60 |
+
By exercising the Licensed Rights (defined below), You accept and agree
|
61 |
+
to be bound by the terms and conditions of this Creative Commons
|
62 |
+
Attribution-NonCommercial-ShareAlike 4.0 International Public License
|
63 |
+
("Public License"). To the extent this Public License may be
|
64 |
+
interpreted as a contract, You are granted the Licensed Rights in
|
65 |
+
consideration of Your acceptance of these terms and conditions, and the
|
66 |
+
Licensor grants You such rights in consideration of benefits the
|
67 |
+
Licensor receives from making the Licensed Material available under
|
68 |
+
these terms and conditions.
|
69 |
+
|
70 |
+
|
71 |
+
Section 1 -- Definitions.
|
72 |
+
|
73 |
+
a. Adapted Material means material subject to Copyright and Similar
|
74 |
+
Rights that is derived from or based upon the Licensed Material
|
75 |
+
and in which the Licensed Material is translated, altered,
|
76 |
+
arranged, transformed, or otherwise modified in a manner requiring
|
77 |
+
permission under the Copyright and Similar Rights held by the
|
78 |
+
Licensor. For purposes of this Public License, where the Licensed
|
79 |
+
Material is a musical work, performance, or sound recording,
|
80 |
+
Adapted Material is always produced where the Licensed Material is
|
81 |
+
synched in timed relation with a moving image.
|
82 |
+
|
83 |
+
b. Adapter's License means the license You apply to Your Copyright
|
84 |
+
and Similar Rights in Your contributions to Adapted Material in
|
85 |
+
accordance with the terms and conditions of this Public License.
|
86 |
+
|
87 |
+
c. BY-NC-SA Compatible License means a license listed at
|
88 |
+
creativecommons.org/compatiblelicenses, approved by Creative
|
89 |
+
Commons as essentially the equivalent of this Public License.
|
90 |
+
|
91 |
+
d. Copyright and Similar Rights means copyright and/or similar rights
|
92 |
+
closely related to copyright including, without limitation,
|
93 |
+
performance, broadcast, sound recording, and Sui Generis Database
|
94 |
+
Rights, without regard to how the rights are labeled or
|
95 |
+
categorized. For purposes of this Public License, the rights
|
96 |
+
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
97 |
+
Rights.
|
98 |
+
|
99 |
+
e. Effective Technological Measures means those measures that, in the
|
100 |
+
absence of proper authority, may not be circumvented under laws
|
101 |
+
fulfilling obligations under Article 11 of the WIPO Copyright
|
102 |
+
Treaty adopted on December 20, 1996, and/or similar international
|
103 |
+
agreements.
|
104 |
+
|
105 |
+
f. Exceptions and Limitations means fair use, fair dealing, and/or
|
106 |
+
any other exception or limitation to Copyright and Similar Rights
|
107 |
+
that applies to Your use of the Licensed Material.
|
108 |
+
|
109 |
+
g. License Elements means the license attributes listed in the name
|
110 |
+
of a Creative Commons Public License. The License Elements of this
|
111 |
+
Public License are Attribution, NonCommercial, and ShareAlike.
|
112 |
+
|
113 |
+
h. Licensed Material means the artistic or literary work, database,
|
114 |
+
or other material to which the Licensor applied this Public
|
115 |
+
License.
|
116 |
+
|
117 |
+
i. Licensed Rights means the rights granted to You subject to the
|
118 |
+
terms and conditions of this Public License, which are limited to
|
119 |
+
all Copyright and Similar Rights that apply to Your use of the
|
120 |
+
Licensed Material and that the Licensor has authority to license.
|
121 |
+
|
122 |
+
j. Licensor means the individual(s) or entity(ies) granting rights
|
123 |
+
under this Public License.
|
124 |
+
|
125 |
+
k. NonCommercial means not primarily intended for or directed towards
|
126 |
+
commercial advantage or monetary compensation. For purposes of
|
127 |
+
this Public License, the exchange of the Licensed Material for
|
128 |
+
other material subject to Copyright and Similar Rights by digital
|
129 |
+
file-sharing or similar means is NonCommercial provided there is
|
130 |
+
no payment of monetary compensation in connection with the
|
131 |
+
exchange.
|
132 |
+
|
133 |
+
l. Share means to provide material to the public by any means or
|
134 |
+
process that requires permission under the Licensed Rights, such
|
135 |
+
as reproduction, public display, public performance, distribution,
|
136 |
+
dissemination, communication, or importation, and to make material
|
137 |
+
available to the public including in ways that members of the
|
138 |
+
public may access the material from a place and at a time
|
139 |
+
individually chosen by them.
|
140 |
+
|
141 |
+
m. Sui Generis Database Rights means rights other than copyright
|
142 |
+
resulting from Directive 96/9/EC of the European Parliament and of
|
143 |
+
the Council of 11 March 1996 on the legal protection of databases,
|
144 |
+
as amended and/or succeeded, as well as other essentially
|
145 |
+
equivalent rights anywhere in the world.
|
146 |
+
|
147 |
+
n. You means the individual or entity exercising the Licensed Rights
|
148 |
+
under this Public License. Your has a corresponding meaning.
|
149 |
+
|
150 |
+
|
151 |
+
Section 2 -- Scope.
|
152 |
+
|
153 |
+
a. License grant.
|
154 |
+
|
155 |
+
1. Subject to the terms and conditions of this Public License,
|
156 |
+
the Licensor hereby grants You a worldwide, royalty-free,
|
157 |
+
non-sublicensable, non-exclusive, irrevocable license to
|
158 |
+
exercise the Licensed Rights in the Licensed Material to:
|
159 |
+
|
160 |
+
a. reproduce and Share the Licensed Material, in whole or
|
161 |
+
in part, for NonCommercial purposes only; and
|
162 |
+
|
163 |
+
b. produce, reproduce, and Share Adapted Material for
|
164 |
+
NonCommercial purposes only.
|
165 |
+
|
166 |
+
2. Exceptions and Limitations. For the avoidance of doubt, where
|
167 |
+
Exceptions and Limitations apply to Your use, this Public
|
168 |
+
License does not apply, and You do not need to comply with
|
169 |
+
its terms and conditions.
|
170 |
+
|
171 |
+
3. Term. The term of this Public License is specified in Section
|
172 |
+
6(a).
|
173 |
+
|
174 |
+
4. Media and formats; technical modifications allowed. The
|
175 |
+
Licensor authorizes You to exercise the Licensed Rights in
|
176 |
+
all media and formats whether now known or hereafter created,
|
177 |
+
and to make technical modifications necessary to do so. The
|
178 |
+
Licensor waives and/or agrees not to assert any right or
|
179 |
+
authority to forbid You from making technical modifications
|
180 |
+
necessary to exercise the Licensed Rights, including
|
181 |
+
technical modifications necessary to circumvent Effective
|
182 |
+
Technological Measures. For purposes of this Public License,
|
183 |
+
simply making modifications authorized by this Section 2(a)
|
184 |
+
(4) never produces Adapted Material.
|
185 |
+
|
186 |
+
5. Downstream recipients.
|
187 |
+
|
188 |
+
a. Offer from the Licensor -- Licensed Material. Every
|
189 |
+
recipient of the Licensed Material automatically
|
190 |
+
receives an offer from the Licensor to exercise the
|
191 |
+
Licensed Rights under the terms and conditions of this
|
192 |
+
Public License.
|
193 |
+
|
194 |
+
b. Additional offer from the Licensor -- Adapted Material.
|
195 |
+
Every recipient of Adapted Material from You
|
196 |
+
automatically receives an offer from the Licensor to
|
197 |
+
exercise the Licensed Rights in the Adapted Material
|
198 |
+
under the conditions of the Adapter's License You apply.
|
199 |
+
|
200 |
+
c. No downstream restrictions. You may not offer or impose
|
201 |
+
any additional or different terms or conditions on, or
|
202 |
+
apply any Effective Technological Measures to, the
|
203 |
+
Licensed Material if doing so restricts exercise of the
|
204 |
+
Licensed Rights by any recipient of the Licensed
|
205 |
+
Material.
|
206 |
+
|
207 |
+
6. No endorsement. Nothing in this Public License constitutes or
|
208 |
+
may be construed as permission to assert or imply that You
|
209 |
+
are, or that Your use of the Licensed Material is, connected
|
210 |
+
with, or sponsored, endorsed, or granted official status by,
|
211 |
+
the Licensor or others designated to receive attribution as
|
212 |
+
provided in Section 3(a)(1)(A)(i).
|
213 |
+
|
214 |
+
b. Other rights.
|
215 |
+
|
216 |
+
1. Moral rights, such as the right of integrity, are not
|
217 |
+
licensed under this Public License, nor are publicity,
|
218 |
+
privacy, and/or other similar personality rights; however, to
|
219 |
+
the extent possible, the Licensor waives and/or agrees not to
|
220 |
+
assert any such rights held by the Licensor to the limited
|
221 |
+
extent necessary to allow You to exercise the Licensed
|
222 |
+
Rights, but not otherwise.
|
223 |
+
|
224 |
+
2. Patent and trademark rights are not licensed under this
|
225 |
+
Public License.
|
226 |
+
|
227 |
+
3. To the extent possible, the Licensor waives any right to
|
228 |
+
collect royalties from You for the exercise of the Licensed
|
229 |
+
Rights, whether directly or through a collecting society
|
230 |
+
under any voluntary or waivable statutory or compulsory
|
231 |
+
licensing scheme. In all other cases the Licensor expressly
|
232 |
+
reserves any right to collect such royalties, including when
|
233 |
+
the Licensed Material is used other than for NonCommercial
|
234 |
+
purposes.
|
235 |
+
|
236 |
+
|
237 |
+
Section 3 -- License Conditions.
|
238 |
+
|
239 |
+
Your exercise of the Licensed Rights is expressly made subject to the
|
240 |
+
following conditions.
|
241 |
+
|
242 |
+
a. Attribution.
|
243 |
+
|
244 |
+
1. If You Share the Licensed Material (including in modified
|
245 |
+
form), You must:
|
246 |
+
|
247 |
+
a. retain the following if it is supplied by the Licensor
|
248 |
+
with the Licensed Material:
|
249 |
+
|
250 |
+
i. identification of the creator(s) of the Licensed
|
251 |
+
Material and any others designated to receive
|
252 |
+
attribution, in any reasonable manner requested by
|
253 |
+
the Licensor (including by pseudonym if
|
254 |
+
designated);
|
255 |
+
|
256 |
+
ii. a copyright notice;
|
257 |
+
|
258 |
+
iii. a notice that refers to this Public License;
|
259 |
+
|
260 |
+
iv. a notice that refers to the disclaimer of
|
261 |
+
warranties;
|
262 |
+
|
263 |
+
v. a URI or hyperlink to the Licensed Material to the
|
264 |
+
extent reasonably practicable;
|
265 |
+
|
266 |
+
b. indicate if You modified the Licensed Material and
|
267 |
+
retain an indication of any previous modifications; and
|
268 |
+
|
269 |
+
c. indicate the Licensed Material is licensed under this
|
270 |
+
Public License, and include the text of, or the URI or
|
271 |
+
hyperlink to, this Public License.
|
272 |
+
|
273 |
+
2. You may satisfy the conditions in Section 3(a)(1) in any
|
274 |
+
reasonable manner based on the medium, means, and context in
|
275 |
+
which You Share the Licensed Material. For example, it may be
|
276 |
+
reasonable to satisfy the conditions by providing a URI or
|
277 |
+
hyperlink to a resource that includes the required
|
278 |
+
information.
|
279 |
+
3. If requested by the Licensor, You must remove any of the
|
280 |
+
information required by Section 3(a)(1)(A) to the extent
|
281 |
+
reasonably practicable.
|
282 |
+
|
283 |
+
b. ShareAlike.
|
284 |
+
|
285 |
+
In addition to the conditions in Section 3(a), if You Share
|
286 |
+
Adapted Material You produce, the following conditions also apply.
|
287 |
+
|
288 |
+
1. The Adapter's License You apply must be a Creative Commons
|
289 |
+
license with the same License Elements, this version or
|
290 |
+
later, or a BY-NC-SA Compatible License.
|
291 |
+
|
292 |
+
2. You must include the text of, or the URI or hyperlink to, the
|
293 |
+
Adapter's License You apply. You may satisfy this condition
|
294 |
+
in any reasonable manner based on the medium, means, and
|
295 |
+
context in which You Share Adapted Material.
|
296 |
+
|
297 |
+
3. You may not offer or impose any additional or different terms
|
298 |
+
or conditions on, or apply any Effective Technological
|
299 |
+
Measures to, Adapted Material that restrict exercise of the
|
300 |
+
rights granted under the Adapter's License You apply.
|
301 |
+
|
302 |
+
|
303 |
+
Section 4 -- Sui Generis Database Rights.
|
304 |
+
|
305 |
+
Where the Licensed Rights include Sui Generis Database Rights that
|
306 |
+
apply to Your use of the Licensed Material:
|
307 |
+
|
308 |
+
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
309 |
+
to extract, reuse, reproduce, and Share all or a substantial
|
310 |
+
portion of the contents of the database for NonCommercial purposes
|
311 |
+
only;
|
312 |
+
|
313 |
+
b. if You include all or a substantial portion of the database
|
314 |
+
contents in a database in which You have Sui Generis Database
|
315 |
+
Rights, then the database in which You have Sui Generis Database
|
316 |
+
Rights (but not its individual contents) is Adapted Material,
|
317 |
+
including for purposes of Section 3(b); and
|
318 |
+
|
319 |
+
c. You must comply with the conditions in Section 3(a) if You Share
|
320 |
+
all or a substantial portion of the contents of the database.
|
321 |
+
|
322 |
+
For the avoidance of doubt, this Section 4 supplements and does not
|
323 |
+
replace Your obligations under this Public License where the Licensed
|
324 |
+
Rights include other Copyright and Similar Rights.
|
325 |
+
|
326 |
+
|
327 |
+
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
328 |
+
|
329 |
+
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
330 |
+
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
331 |
+
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
332 |
+
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
333 |
+
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
334 |
+
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
335 |
+
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
336 |
+
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
337 |
+
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
338 |
+
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
339 |
+
|
340 |
+
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
341 |
+
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
342 |
+
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
343 |
+
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
344 |
+
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
345 |
+
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
346 |
+
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
347 |
+
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
348 |
+
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
349 |
+
|
350 |
+
c. The disclaimer of warranties and limitation of liability provided
|
351 |
+
above shall be interpreted in a manner that, to the extent
|
352 |
+
possible, most closely approximates an absolute disclaimer and
|
353 |
+
waiver of all liability.
|
354 |
+
|
355 |
+
|
356 |
+
Section 6 -- Term and Termination.
|
357 |
+
|
358 |
+
a. This Public License applies for the term of the Copyright and
|
359 |
+
Similar Rights licensed here. However, if You fail to comply with
|
360 |
+
this Public License, then Your rights under this Public License
|
361 |
+
terminate automatically.
|
362 |
+
|
363 |
+
b. Where Your right to use the Licensed Material has terminated under
|
364 |
+
Section 6(a), it reinstates:
|
365 |
+
|
366 |
+
1. automatically as of the date the violation is cured, provided
|
367 |
+
it is cured within 30 days of Your discovery of the
|
368 |
+
violation; or
|
369 |
+
|
370 |
+
2. upon express reinstatement by the Licensor.
|
371 |
+
|
372 |
+
For the avoidance of doubt, this Section 6(b) does not affect any
|
373 |
+
right the Licensor may have to seek remedies for Your violations
|
374 |
+
of this Public License.
|
375 |
+
|
376 |
+
c. For the avoidance of doubt, the Licensor may also offer the
|
377 |
+
Licensed Material under separate terms or conditions or stop
|
378 |
+
distributing the Licensed Material at any time; however, doing so
|
379 |
+
will not terminate this Public License.
|
380 |
+
|
381 |
+
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
382 |
+
License.
|
383 |
+
|
384 |
+
|
385 |
+
Section 7 -- Other Terms and Conditions.
|
386 |
+
|
387 |
+
a. The Licensor shall not be bound by any additional or different
|
388 |
+
terms or conditions communicated by You unless expressly agreed.
|
389 |
+
|
390 |
+
b. Any arrangements, understandings, or agreements regarding the
|
391 |
+
Licensed Material not stated herein are separate from and
|
392 |
+
independent of the terms and conditions of this Public License.
|
393 |
+
|
394 |
+
|
395 |
+
Section 8 -- Interpretation.
|
396 |
+
|
397 |
+
a. For the avoidance of doubt, this Public License does not, and
|
398 |
+
shall not be interpreted to, reduce, limit, restrict, or impose
|
399 |
+
conditions on any use of the Licensed Material that could lawfully
|
400 |
+
be made without permission under this Public License.
|
401 |
+
|
402 |
+
b. To the extent possible, if any provision of this Public License is
|
403 |
+
deemed unenforceable, it shall be automatically reformed to the
|
404 |
+
minimum extent necessary to make it enforceable. If the provision
|
405 |
+
cannot be reformed, it shall be severed from this Public License
|
406 |
+
without affecting the enforceability of the remaining terms and
|
407 |
+
conditions.
|
408 |
+
|
409 |
+
c. No term or condition of this Public License will be waived and no
|
410 |
+
failure to comply consented to unless expressly agreed to by the
|
411 |
+
Licensor.
|
412 |
+
|
413 |
+
d. Nothing in this Public License constitutes or may be interpreted
|
414 |
+
as a limitation upon, or waiver of, any privileges and immunities
|
415 |
+
that apply to the Licensor or You, including from the legal
|
416 |
+
processes of any jurisdiction or authority.
|
417 |
+
|
418 |
+
=======================================================================
|
419 |
+
|
420 |
+
Creative Commons is not a party to its public
|
421 |
+
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
422 |
+
its public licenses to material it publishes and in those instances
|
423 |
+
will be considered the “Licensor.” The text of the Creative Commons
|
424 |
+
public licenses is dedicated to the public domain under the CC0 Public
|
425 |
+
Domain Dedication. Except for the limited purpose of indicating that
|
426 |
+
material is shared under a Creative Commons public license or as
|
427 |
+
otherwise permitted by the Creative Commons policies published at
|
428 |
+
creativecommons.org/policies, Creative Commons does not authorize the
|
429 |
+
use of the trademark "Creative Commons" or any other trademark or logo
|
430 |
+
of Creative Commons without its prior written consent including,
|
431 |
+
without limitation, in connection with any unauthorized modifications
|
432 |
+
to any of its public licenses or any other arrangements,
|
433 |
+
understandings, or agreements concerning use of licensed material. For
|
434 |
+
the avoidance of doubt, this paragraph does not form part of the
|
435 |
+
public licenses.
|
436 |
+
|
437 |
+
Creative Commons may be contacted at creativecommons.org.
|
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
title: Word As Image
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Word As Image
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.21.0
|
8 |
+
python_version: 3.8.15
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
+
license: cc-by-sa-4.0
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import argparse
|
4 |
+
from easydict import EasyDict as edict
|
5 |
+
import yaml
|
6 |
+
import os.path as osp
|
7 |
+
import random
|
8 |
+
import numpy.random as npr
|
9 |
+
import sys
|
10 |
+
|
11 |
+
sys.path.append('/home/user/app/code')
|
12 |
+
|
13 |
+
# set up diffvg
|
14 |
+
os.system('git clone https://github.com/BachiLi/diffvg.git')
|
15 |
+
os.chdir('diffvg')
|
16 |
+
os.system('git submodule update --init --recursive')
|
17 |
+
os.system('python setup.py install --user')
|
18 |
+
sys.path.append("/home/user/.local/lib/python3.8/site-packages/diffvg-0.0.1-py3.8-linux-x86_64.egg")
|
19 |
+
|
20 |
+
os.chdir('/home/user/app')
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from diffusers import StableDiffusionPipeline
|
24 |
+
|
25 |
+
|
26 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
27 |
+
|
28 |
+
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
|
29 |
+
torch_dtype=torch.float16, use_auth_token=os.environ['HF_TOKEN']).to(device)
|
30 |
+
|
31 |
+
from typing import Mapping
|
32 |
+
from tqdm import tqdm
|
33 |
+
import torch
|
34 |
+
from torch.optim.lr_scheduler import LambdaLR
|
35 |
+
import pydiffvg
|
36 |
+
import save_svg
|
37 |
+
from losses import SDSLoss, ToneLoss, ConformalLoss
|
38 |
+
from utils import (
|
39 |
+
edict_2_dict,
|
40 |
+
update,
|
41 |
+
check_and_create_dir,
|
42 |
+
get_data_augs,
|
43 |
+
save_image,
|
44 |
+
preprocess,
|
45 |
+
learning_rate_decay,
|
46 |
+
combine_word)
|
47 |
+
import warnings
|
48 |
+
|
49 |
+
TITLE="""<h1 style="font-size: 42px;" align="center">Word-As-Image for Semantic Typography</h1>"""
|
50 |
+
DESCRIPTION="""This is a demo for [Word-As-Image for Semantic Typography](https://wordasimage.github.io/Word-As-Image-Page/). By using Word-as-Image, a visual representation of the meaning of the word is created while maintaining legibility of the text and font style.
|
51 |
+
Please select a semantic concept word and a letter you wish to generate, it will take ~5 minutes to perform 500 iterations."""
|
52 |
+
|
53 |
+
warnings.filterwarnings("ignore")
|
54 |
+
|
55 |
+
pydiffvg.set_print_timing(False)
|
56 |
+
gamma = 1.0
|
57 |
+
|
58 |
+
|
59 |
+
def set_config(semantic_concept, word, letter, font_name, num_steps):
|
60 |
+
|
61 |
+
cfg_d = edict()
|
62 |
+
cfg_d.config = "code/config/base.yaml"
|
63 |
+
cfg_d.experiment = "demo"
|
64 |
+
|
65 |
+
with open(cfg_d.config, 'r') as f:
|
66 |
+
cfg_full = yaml.load(f, Loader=yaml.FullLoader)
|
67 |
+
|
68 |
+
cfg_key = cfg_d.experiment
|
69 |
+
cfgs = [cfg_d]
|
70 |
+
while cfg_key:
|
71 |
+
cfgs.append(cfg_full[cfg_key])
|
72 |
+
cfg_key = cfgs[-1].get('parent_config', 'baseline')
|
73 |
+
|
74 |
+
cfg = edict()
|
75 |
+
for options in reversed(cfgs):
|
76 |
+
update(cfg, options)
|
77 |
+
del cfgs
|
78 |
+
|
79 |
+
cfg.semantic_concept = semantic_concept
|
80 |
+
cfg.word = word
|
81 |
+
cfg.optimized_letter = letter
|
82 |
+
cfg.font = font_name
|
83 |
+
cfg.seed = 0
|
84 |
+
cfg.num_iter = num_steps
|
85 |
+
|
86 |
+
if ' ' in cfg.word:
|
87 |
+
raise gr.Error(f'should be only one word')
|
88 |
+
cfg.caption = f"a {cfg.semantic_concept}. {cfg.prompt_suffix}"
|
89 |
+
cfg.log_dir = f"output/{cfg.experiment}_{cfg.word}"
|
90 |
+
if cfg.optimized_letter in cfg.word:
|
91 |
+
cfg.optimized_letter = cfg.optimized_letter
|
92 |
+
else:
|
93 |
+
raise gr.Error(f'letter should be in word')
|
94 |
+
|
95 |
+
cfg.letter = f"{cfg.font}_{cfg.optimized_letter}_scaled"
|
96 |
+
cfg.target = f"code/data/init/{cfg.letter}"
|
97 |
+
|
98 |
+
# set experiment dir
|
99 |
+
signature = f"{cfg.letter}_concept_{cfg.semantic_concept}_seed_{cfg.seed}"
|
100 |
+
cfg.experiment_dir = \
|
101 |
+
osp.join(cfg.log_dir, cfg.font, signature)
|
102 |
+
configfile = osp.join(cfg.experiment_dir, 'config.yaml')
|
103 |
+
|
104 |
+
# create experiment dir and save config
|
105 |
+
check_and_create_dir(configfile)
|
106 |
+
with open(osp.join(configfile), 'w') as f:
|
107 |
+
yaml.dump(edict_2_dict(cfg), f)
|
108 |
+
|
109 |
+
if cfg.seed is not None:
|
110 |
+
random.seed(cfg.seed)
|
111 |
+
npr.seed(cfg.seed)
|
112 |
+
torch.manual_seed(cfg.seed)
|
113 |
+
torch.backends.cudnn.benchmark = False
|
114 |
+
else:
|
115 |
+
assert False
|
116 |
+
return cfg
|
117 |
+
|
118 |
+
|
119 |
+
def init_shapes(svg_path, trainable: Mapping[str, bool]):
|
120 |
+
svg = f'{svg_path}.svg'
|
121 |
+
canvas_width, canvas_height, shapes_init, shape_groups_init = pydiffvg.svg_to_scene(svg)
|
122 |
+
|
123 |
+
parameters = edict()
|
124 |
+
|
125 |
+
# path points
|
126 |
+
if trainable.point:
|
127 |
+
parameters.point = []
|
128 |
+
for path in shapes_init:
|
129 |
+
path.points.requires_grad = True
|
130 |
+
parameters.point.append(path.points)
|
131 |
+
|
132 |
+
return shapes_init, shape_groups_init, parameters
|
133 |
+
|
134 |
+
|
135 |
+
def run_main_ex(semantic_concept, word, letter, font_name, num_steps):
|
136 |
+
return list(next(run_main_app(semantic_concept, word, letter, font_name, num_steps, 1)))
|
137 |
+
|
138 |
+
def run_main_app(semantic_concept, word, letter, font_name, num_steps, example=0):
|
139 |
+
|
140 |
+
cfg = set_config(semantic_concept, word, letter, font_name, num_steps)
|
141 |
+
|
142 |
+
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
143 |
+
|
144 |
+
print("preprocessing")
|
145 |
+
preprocess(cfg.font, cfg.word, cfg.optimized_letter, cfg.level_of_cc)
|
146 |
+
filename_init = os.path.join("code/data/init/", f"{cfg.font}_{cfg.word}_scaled.svg").replace(" ", "_")
|
147 |
+
if not example:
|
148 |
+
yield gr.update(value=filename_init,visible=True),gr.update(visible=False),gr.update(visible=False)
|
149 |
+
|
150 |
+
sds_loss = SDSLoss(cfg, device, model)
|
151 |
+
|
152 |
+
h, w = cfg.render_size, cfg.render_size
|
153 |
+
|
154 |
+
data_augs = get_data_augs(cfg.cut_size)
|
155 |
+
|
156 |
+
render = pydiffvg.RenderFunction.apply
|
157 |
+
|
158 |
+
# initialize shape
|
159 |
+
print('initializing shape')
|
160 |
+
shapes, shape_groups, parameters = init_shapes(svg_path=cfg.target, trainable=cfg.trainable)
|
161 |
+
|
162 |
+
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
|
163 |
+
img_init = render(w, h, 2, 2, 0, None, *scene_args)
|
164 |
+
img_init = img_init[:, :, 3:4] * img_init[:, :, :3] + \
|
165 |
+
torch.ones(img_init.shape[0], img_init.shape[1], 3, device=device) * (1 - img_init[:, :, 3:4])
|
166 |
+
img_init = img_init[:, :, :3]
|
167 |
+
|
168 |
+
tone_loss = ToneLoss(cfg)
|
169 |
+
tone_loss.set_image_init(img_init)
|
170 |
+
|
171 |
+
num_iter = cfg.num_iter
|
172 |
+
pg = [{'params': parameters["point"], 'lr': cfg.lr_base["point"]}]
|
173 |
+
optim = torch.optim.Adam(pg, betas=(0.9, 0.9), eps=1e-6)
|
174 |
+
|
175 |
+
conformal_loss = ConformalLoss(parameters, device, cfg.optimized_letter, shape_groups)
|
176 |
+
|
177 |
+
lr_lambda = lambda step: learning_rate_decay(step, cfg.lr.lr_init, cfg.lr.lr_final, num_iter,
|
178 |
+
lr_delay_steps=cfg.lr.lr_delay_steps,
|
179 |
+
lr_delay_mult=cfg.lr.lr_delay_mult) / cfg.lr.lr_init
|
180 |
+
|
181 |
+
scheduler = LambdaLR(optim, lr_lambda=lr_lambda, last_epoch=-1) # lr.base * lrlambda_f
|
182 |
+
|
183 |
+
print("start training")
|
184 |
+
# training loop
|
185 |
+
t_range = tqdm(range(num_iter))
|
186 |
+
for step in t_range:
|
187 |
+
optim.zero_grad()
|
188 |
+
|
189 |
+
# render image
|
190 |
+
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
|
191 |
+
img = render(w, h, 2, 2, step, None, *scene_args)
|
192 |
+
|
193 |
+
# compose image with white background
|
194 |
+
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (
|
195 |
+
1 - img[:, :, 3:4])
|
196 |
+
img = img[:, :, :3]
|
197 |
+
|
198 |
+
filename = os.path.join(
|
199 |
+
cfg.experiment_dir, "video-svg", f"iter{step:04d}.svg")
|
200 |
+
check_and_create_dir(filename)
|
201 |
+
save_svg.save_svg(filename, w, h, shapes, shape_groups)
|
202 |
+
if not example:
|
203 |
+
yield gr.update(visible=True),gr.update(value=filename, label=f'iters: {step} / {num_iter}', visible=True),gr.update(visible=False)
|
204 |
+
|
205 |
+
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
|
206 |
+
x = x.repeat(cfg.batch_size, 1, 1, 1)
|
207 |
+
x_aug = data_augs.forward(x)
|
208 |
+
|
209 |
+
# compute diffusion loss per pixel
|
210 |
+
loss = sds_loss(x_aug)
|
211 |
+
|
212 |
+
tone_loss_res = tone_loss(x, step)
|
213 |
+
loss = loss + tone_loss_res
|
214 |
+
|
215 |
+
loss_angles = conformal_loss()
|
216 |
+
loss_angles = cfg.loss.conformal.angeles_w * loss_angles
|
217 |
+
loss = loss + loss_angles
|
218 |
+
|
219 |
+
loss.backward()
|
220 |
+
optim.step()
|
221 |
+
scheduler.step()
|
222 |
+
|
223 |
+
|
224 |
+
filename = os.path.join(
|
225 |
+
cfg.experiment_dir, "output-svg", "output.svg")
|
226 |
+
check_and_create_dir(filename)
|
227 |
+
save_svg.save_svg(
|
228 |
+
filename, w, h, shapes, shape_groups)
|
229 |
+
|
230 |
+
combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir)
|
231 |
+
|
232 |
+
image = os.path.join(cfg.experiment_dir,f"{cfg.font}_{cfg.word}_{cfg.optimized_letter}.svg")
|
233 |
+
yield gr.update(value=filename_init,visible=True),gr.update(visible=False),gr.update(value=image,visible=True)
|
234 |
+
|
235 |
+
|
236 |
+
with gr.Blocks() as demo:
|
237 |
+
|
238 |
+
gr.HTML(TITLE)
|
239 |
+
gr.Markdown(DESCRIPTION)
|
240 |
+
|
241 |
+
with gr.Row():
|
242 |
+
with gr.Column():
|
243 |
+
|
244 |
+
semantic_concept = gr.Text(
|
245 |
+
label='Semantic Concept',
|
246 |
+
max_lines=1,
|
247 |
+
placeholder=
|
248 |
+
'Enter a semantic concept. For example: BUNNY'
|
249 |
+
)
|
250 |
+
|
251 |
+
word = gr.Text(
|
252 |
+
label='Word',
|
253 |
+
max_lines=1,
|
254 |
+
placeholder=
|
255 |
+
'Enter a word. For example: BUNNY'
|
256 |
+
)
|
257 |
+
|
258 |
+
letter = gr.Text(
|
259 |
+
label='Letter',
|
260 |
+
max_lines=1,
|
261 |
+
placeholder=
|
262 |
+
'Choose a letter in the word to optimize. For example: Y'
|
263 |
+
)
|
264 |
+
|
265 |
+
num_steps = gr.Slider(label='Optimization Iterations',
|
266 |
+
minimum=0,
|
267 |
+
maximum=500,
|
268 |
+
step=10,
|
269 |
+
value=500)
|
270 |
+
|
271 |
+
font_name = gr.Text(value=None,visible=False,label="Font Name")
|
272 |
+
gallery = gr.Gallery(value=[(os.path.join("images","KaushanScript-Regular.png"),"KaushanScript-Regular"), (os.path.join("images","IndieFlower-Regular.png"),"IndieFlower-Regular"),(os.path.join("images","Quicksand.png"),"Quicksand"),
|
273 |
+
(os.path.join("images","Saira-Regular.png"),"Saira-Regular"), (os.path.join("images","LuckiestGuy-Regular.png"),"LuckiestGuy-Regular"),(os.path.join("images","DeliusUnicase-Regular.png"),"DeliusUnicase-Regular"),
|
274 |
+
(os.path.join("images","Noteworthy-Bold.png"),"Noteworthy-Bold"), (os.path.join("images","HobeauxRococeaux-Sherman.png"),"HobeauxRococeaux-Sherman")],label="Font Name").style(grid=4)
|
275 |
+
|
276 |
+
def on_select(evt: gr.SelectData):
|
277 |
+
return evt.value
|
278 |
+
|
279 |
+
gallery.select(fn=on_select, inputs=None, outputs=font_name)
|
280 |
+
|
281 |
+
run = gr.Button('Generate')
|
282 |
+
|
283 |
+
with gr.Column():
|
284 |
+
result0 = gr.Image(type="filepath", label="Initial Word").style(height=333)
|
285 |
+
result1 = gr.Image(type="filepath", label="Optimization Process").style(height=110)
|
286 |
+
result2 = gr.Image(type="filepath", label="Final Result",visible=False).style(height=333)
|
287 |
+
|
288 |
+
|
289 |
+
with gr.Row():
|
290 |
+
# examples
|
291 |
+
examples = [
|
292 |
+
[
|
293 |
+
"BUNNY",
|
294 |
+
"BUNNY",
|
295 |
+
"Y",
|
296 |
+
"KaushanScript-Regular",
|
297 |
+
500
|
298 |
+
],
|
299 |
+
[
|
300 |
+
"LION",
|
301 |
+
"LION",
|
302 |
+
"O",
|
303 |
+
"Quicksand",
|
304 |
+
500
|
305 |
+
],
|
306 |
+
[
|
307 |
+
"FROG",
|
308 |
+
"FROG",
|
309 |
+
"G",
|
310 |
+
"IndieFlower-Regular",
|
311 |
+
500
|
312 |
+
],
|
313 |
+
[
|
314 |
+
"CAT",
|
315 |
+
"CAT",
|
316 |
+
"C",
|
317 |
+
"LuckiestGuy-Regular",
|
318 |
+
500
|
319 |
+
],
|
320 |
+
]
|
321 |
+
demo.queue(max_size=10, concurrency_count=2)
|
322 |
+
gr.Examples(examples=examples,
|
323 |
+
inputs=[
|
324 |
+
semantic_concept,
|
325 |
+
word,
|
326 |
+
letter,
|
327 |
+
font_name,
|
328 |
+
num_steps
|
329 |
+
],
|
330 |
+
outputs=[
|
331 |
+
result0,
|
332 |
+
result1,
|
333 |
+
result2
|
334 |
+
],
|
335 |
+
fn=run_main_ex,
|
336 |
+
cache_examples=True)
|
337 |
+
|
338 |
+
|
339 |
+
# inputs
|
340 |
+
inputs = [
|
341 |
+
semantic_concept,
|
342 |
+
word,
|
343 |
+
letter,
|
344 |
+
font_name,
|
345 |
+
num_steps
|
346 |
+
]
|
347 |
+
|
348 |
+
outputs = [
|
349 |
+
result0,
|
350 |
+
result1,
|
351 |
+
result2
|
352 |
+
]
|
353 |
+
|
354 |
+
run.click(fn=run_main_app, inputs=inputs, outputs=outputs, queue=True)
|
355 |
+
|
356 |
+
|
357 |
+
demo.launch(share=False)
|
code/bezier.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from scipy.special import binom
|
4 |
+
from numpy.linalg import norm
|
5 |
+
|
6 |
+
def num_bezier(n_ctrl, degree=3):
|
7 |
+
if type(n_ctrl) == np.ndarray:
|
8 |
+
n_ctrl = len(n_ctrl)
|
9 |
+
return int((n_ctrl - 1) / degree)
|
10 |
+
|
11 |
+
def bernstein(n, i):
|
12 |
+
bi = binom(n, i)
|
13 |
+
return lambda t, bi=bi, n=n, i=i: bi * t**i * (1 - t)**(n - i)
|
14 |
+
|
15 |
+
def bezier(P, t, d=0):
|
16 |
+
'''Bezier curve of degree len(P)-1. d is the derivative order (0 gives positions)'''
|
17 |
+
n = P.shape[0] - 1
|
18 |
+
if d > 0:
|
19 |
+
Q = np.diff(P, axis=0)*n
|
20 |
+
return bezier(Q, t, d-1)
|
21 |
+
B = np.vstack([bernstein(n, i)(t) for i, p in enumerate(P)])
|
22 |
+
return (P.T @ B).T
|
23 |
+
|
24 |
+
def cubic_bezier(P, t):
|
25 |
+
return (1.0-t)**3*P[0] + 3*(1.0-t)**2*t*P[1] + 3*(1.0-t)*t**2*P[2] + t**3*P[3]
|
26 |
+
|
27 |
+
def bezier_piecewise(Cp, subd=100, degree=3, d=0):
|
28 |
+
''' sample a piecewise Bezier curve given a sequence of control points'''
|
29 |
+
num = num_bezier(Cp.shape[0], degree)
|
30 |
+
X = []
|
31 |
+
for i in range(num):
|
32 |
+
P = Cp[i*degree:i*degree+degree+1, :]
|
33 |
+
t = np.linspace(0, 1., subd)[:-1]
|
34 |
+
Y = bezier(P, t, d)
|
35 |
+
X += [Y]
|
36 |
+
X.append(Cp[-1])
|
37 |
+
X = np.vstack(X)
|
38 |
+
return X
|
39 |
+
|
40 |
+
def compute_beziers(beziers, subd=100, degree=3):
|
41 |
+
chain = beziers_to_chain(beziers)
|
42 |
+
return bezier_piecewise(chain, subd, degree)
|
43 |
+
|
44 |
+
def plot_control_polygon(Cp, degree=3, lw=0.5, linecolor=np.ones(3)*0.1):
|
45 |
+
n_bezier = num_bezier(len(Cp), degree)
|
46 |
+
for i in range(n_bezier):
|
47 |
+
cp = Cp[i*degree:i*degree+degree+1, :]
|
48 |
+
if degree==3:
|
49 |
+
plt.plot(cp[0:2,0], cp[0:2, 1], ':', color=linecolor, linewidth=lw)
|
50 |
+
plt.plot(cp[2:,0], cp[2:,1], ':', color=linecolor, linewidth=lw)
|
51 |
+
plt.plot(cp[:,0], cp[:,1], 'o', color=[0, 0.5, 1.], markersize=4)
|
52 |
+
else:
|
53 |
+
plt.plot(cp[:,0], cp[:,1], ':', color=linecolor, linewidth=lw)
|
54 |
+
plt.plot(cp[:,0], cp[:,1], 'o', color=[0, 0.5, 1.])
|
55 |
+
|
56 |
+
|
57 |
+
def chain_to_beziers(chain, degree=3):
|
58 |
+
''' Convert Bezier chain to list of curve segments (4 control points each)'''
|
59 |
+
num = num_bezier(chain.shape[0], degree)
|
60 |
+
beziers = []
|
61 |
+
for i in range(num):
|
62 |
+
beziers.append(chain[i*degree:i*degree+degree+1,:])
|
63 |
+
return beziers
|
64 |
+
|
65 |
+
|
66 |
+
def beziers_to_chain(beziers):
|
67 |
+
''' Convert list of Bezier curve segments to a piecewise bezier chain (shares vertices)'''
|
68 |
+
n = len(beziers)
|
69 |
+
chain = []
|
70 |
+
for i in range(n):
|
71 |
+
chain.append(list(beziers[i][:-1]))
|
72 |
+
chain.append([beziers[-1][-1]])
|
73 |
+
return np.array(sum(chain, []))
|
74 |
+
|
75 |
+
|
76 |
+
def split_cubic(bez, t):
|
77 |
+
p1, p2, p3, p4 = bez
|
78 |
+
|
79 |
+
p12 = (p2 - p1) * t + p1
|
80 |
+
p23 = (p3 - p2) * t + p2
|
81 |
+
p34 = (p4 - p3) * t + p3
|
82 |
+
|
83 |
+
p123 = (p23 - p12) * t + p12
|
84 |
+
p234 = (p34 - p23) * t + p23
|
85 |
+
|
86 |
+
p1234 = (p234 - p123) * t + p123
|
87 |
+
|
88 |
+
return np.array([p1, p12, p123, p1234]), np.array([p1234, p234, p34, p4])
|
89 |
+
|
90 |
+
|
91 |
+
def approx_arc_length(bez):
|
92 |
+
c0, c1, c2, c3 = bez
|
93 |
+
v0 = norm(c1-c0)*0.15
|
94 |
+
v1 = norm(-0.558983582205757*c0 + 0.325650248872424*c1 + 0.208983582205757*c2 + 0.024349751127576*c3)
|
95 |
+
v2 = norm(c3-c0+c2-c1)*0.26666666666666666
|
96 |
+
v3 = norm(-0.024349751127576*c0 - 0.208983582205757*c1 - 0.325650248872424*c2 + 0.558983582205757*c3)
|
97 |
+
v4 = norm(c3-c2)*.15
|
98 |
+
return v0 + v1 + v2 + v3 + v4
|
99 |
+
|
100 |
+
|
101 |
+
def subdivide_bezier(bez, thresh):
|
102 |
+
stack = [bez]
|
103 |
+
res = []
|
104 |
+
while stack:
|
105 |
+
bez = stack.pop()
|
106 |
+
l = approx_arc_length(bez)
|
107 |
+
if l < thresh:
|
108 |
+
res.append(bez)
|
109 |
+
else:
|
110 |
+
b1, b2 = split_cubic(bez, 0.5)
|
111 |
+
stack += [b2, b1]
|
112 |
+
return res
|
113 |
+
|
114 |
+
def subdivide_bezier_chain(C, thresh):
|
115 |
+
beziers = chain_to_beziers(C)
|
116 |
+
res = []
|
117 |
+
for bez in beziers:
|
118 |
+
res += subdivide_bezier(bez, thresh)
|
119 |
+
return beziers_to_chain(res)
|
120 |
+
|
121 |
+
|
122 |
+
|
code/config/base.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
baseline:
|
2 |
+
parent_config: ''
|
3 |
+
save:
|
4 |
+
init: true
|
5 |
+
image: true
|
6 |
+
video: true
|
7 |
+
video_frame_freq: 1
|
8 |
+
trainable:
|
9 |
+
point: true
|
10 |
+
lr_base:
|
11 |
+
point: 1
|
12 |
+
lr:
|
13 |
+
lr_init: 0.002
|
14 |
+
lr_final: 0.0008
|
15 |
+
lr_delay_mult: 0.1
|
16 |
+
lr_delay_steps: 100
|
17 |
+
num_iter: 500
|
18 |
+
render_size: 600
|
19 |
+
cut_size: 512
|
20 |
+
level_of_cc: 0 # 0 - original number of cc / 1 - recommended / 2 - more control points
|
21 |
+
seed: 0
|
22 |
+
diffusion:
|
23 |
+
model: "runwayml/stable-diffusion-v1-5"
|
24 |
+
timesteps: 1000
|
25 |
+
guidance_scale: 100
|
26 |
+
loss:
|
27 |
+
use_sds_loss: true
|
28 |
+
tone:
|
29 |
+
use_tone_loss: false
|
30 |
+
conformal:
|
31 |
+
use_conformal_loss: false
|
32 |
+
|
33 |
+
conformal_0.5_dist_pixel_100_kernel201:
|
34 |
+
parent_config: baseline
|
35 |
+
level_of_cc: 1
|
36 |
+
prompt_suffix: "minimal flat 2d vector. lineal color. minimal flat 2d vector. lineal color."
|
37 |
+
batch_size: 1
|
38 |
+
loss:
|
39 |
+
tone:
|
40 |
+
use_tone_loss: true
|
41 |
+
dist_loss_weight: 100
|
42 |
+
pixel_dist_kernel_blur: 201
|
43 |
+
pixel_dist_sigma: 30
|
44 |
+
conformal:
|
45 |
+
use_conformal_loss: true
|
46 |
+
angeles_w: 0.5
|
47 |
+
|
48 |
+
demo:
|
49 |
+
parent_config: conformal_0.5_dist_pixel_100_kernel201
|
50 |
+
token: false
|
code/data/fonts/Bell MT.ttf
ADDED
Binary file (84.8 kB). View file
|
|
code/data/fonts/DeliusUnicase-Regular.ttf
ADDED
Binary file (31.5 kB). View file
|
|
code/data/fonts/HobeauxRococeaux-Sherman.ttf
ADDED
Binary file (117 kB). View file
|
|
code/data/fonts/IndieFlower-Regular.ttf
ADDED
Binary file (55.4 kB). View file
|
|
code/data/fonts/JosefinSans-Light.ttf
ADDED
Binary file (59.3 kB). View file
|
|
code/data/fonts/KaushanScript-Regular.ttf
ADDED
Binary file (184 kB). View file
|
|
code/data/fonts/LuckiestGuy-Regular.ttf
ADDED
Binary file (58.3 kB). View file
|
|
code/data/fonts/Noteworthy-Bold.ttf
ADDED
Binary file (248 kB). View file
|
|
code/data/fonts/Quicksand.ttf
ADDED
Binary file (124 kB). View file
|
|
code/data/fonts/Saira-Regular.ttf
ADDED
Binary file (82.8 kB). View file
|
|
code/losses.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torchvision
|
3 |
+
from scipy.spatial import Delaunay
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from torch.nn import functional as nnf
|
7 |
+
from easydict import EasyDict
|
8 |
+
from shapely.geometry import Point
|
9 |
+
from shapely.geometry.polygon import Polygon
|
10 |
+
|
11 |
+
from diffusers import StableDiffusionPipeline
|
12 |
+
|
13 |
+
class SDSLoss(nn.Module):
|
14 |
+
def __init__(self, cfg, device, model):
|
15 |
+
super(SDSLoss, self).__init__()
|
16 |
+
self.cfg = cfg
|
17 |
+
self.device = device
|
18 |
+
# self.pipe = StableDiffusionPipeline.from_pretrained(cfg.diffusion.model,
|
19 |
+
# torch_dtype=torch.float16, use_auth_token=cfg.token)
|
20 |
+
|
21 |
+
# self.pipe = self.pipe.to(self.device)
|
22 |
+
self.pipe=model
|
23 |
+
# default scheduler: PNDMScheduler(beta_start=0.00085, beta_end=0.012,
|
24 |
+
# beta_schedule="scaled_linear", num_train_timesteps=1000)
|
25 |
+
self.alphas = self.pipe.scheduler.alphas_cumprod.to(self.device)
|
26 |
+
self.sigmas = (1 - self.pipe.scheduler.alphas_cumprod).to(self.device)
|
27 |
+
|
28 |
+
self.text_embeddings = None
|
29 |
+
self.embed_text()
|
30 |
+
|
31 |
+
def embed_text(self):
|
32 |
+
# tokenizer and embed text
|
33 |
+
text_input = self.pipe.tokenizer(self.cfg.caption, padding="max_length",
|
34 |
+
max_length=self.pipe.tokenizer.model_max_length,
|
35 |
+
truncation=True, return_tensors="pt")
|
36 |
+
uncond_input = self.pipe.tokenizer([""], padding="max_length",
|
37 |
+
max_length=text_input.input_ids.shape[-1],
|
38 |
+
return_tensors="pt")
|
39 |
+
with torch.no_grad():
|
40 |
+
text_embeddings = self.pipe.text_encoder(text_input.input_ids.to(self.device))[0]
|
41 |
+
uncond_embeddings = self.pipe.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
42 |
+
self.text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
43 |
+
self.text_embeddings = self.text_embeddings.repeat_interleave(self.cfg.batch_size, 0)
|
44 |
+
# del self.pipe.tokenizer
|
45 |
+
# del self.pipe.text_encoder
|
46 |
+
|
47 |
+
|
48 |
+
def forward(self, x_aug):
|
49 |
+
sds_loss = 0
|
50 |
+
|
51 |
+
# encode rendered image
|
52 |
+
x = x_aug * 2. - 1.
|
53 |
+
with torch.cuda.amp.autocast():
|
54 |
+
init_latent_z = (self.pipe.vae.encode(x).latent_dist.sample())
|
55 |
+
latent_z = 0.18215 * init_latent_z # scaling_factor * init_latents
|
56 |
+
|
57 |
+
with torch.inference_mode():
|
58 |
+
# sample timesteps
|
59 |
+
timestep = torch.randint(
|
60 |
+
low=50,
|
61 |
+
high=min(950, self.cfg.diffusion.timesteps) - 1, # avoid highest timestep | diffusion.timesteps=1000
|
62 |
+
size=(latent_z.shape[0],),
|
63 |
+
device=self.device, dtype=torch.long)
|
64 |
+
|
65 |
+
# add noise
|
66 |
+
eps = torch.randn_like(latent_z)
|
67 |
+
# zt = alpha_t * latent_z + sigma_t * eps
|
68 |
+
noised_latent_zt = self.pipe.scheduler.add_noise(latent_z, eps, timestep)
|
69 |
+
|
70 |
+
# denoise
|
71 |
+
z_in = torch.cat([noised_latent_zt] * 2) # expand latents for classifier free guidance
|
72 |
+
timestep_in = torch.cat([timestep] * 2)
|
73 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
74 |
+
eps_t_uncond, eps_t = self.pipe.unet(z_in, timestep, encoder_hidden_states=self.text_embeddings).sample.float().chunk(2)
|
75 |
+
|
76 |
+
eps_t = eps_t_uncond + self.cfg.diffusion.guidance_scale * (eps_t - eps_t_uncond)
|
77 |
+
|
78 |
+
# w = alphas[timestep]^0.5 * (1 - alphas[timestep]) = alphas[timestep]^0.5 * sigmas[timestep]
|
79 |
+
grad_z = self.alphas[timestep]**0.5 * self.sigmas[timestep] * (eps_t - eps)
|
80 |
+
assert torch.isfinite(grad_z).all()
|
81 |
+
grad_z = torch.nan_to_num(grad_z.detach().float(), 0.0, 0.0, 0.0)
|
82 |
+
|
83 |
+
sds_loss = grad_z.clone() * latent_z
|
84 |
+
del grad_z
|
85 |
+
|
86 |
+
sds_loss = sds_loss.sum(1).mean()
|
87 |
+
return sds_loss
|
88 |
+
|
89 |
+
|
90 |
+
class ToneLoss(nn.Module):
|
91 |
+
def __init__(self, cfg):
|
92 |
+
super(ToneLoss, self).__init__()
|
93 |
+
self.dist_loss_weight = cfg.loss.tone.dist_loss_weight
|
94 |
+
self.im_init = None
|
95 |
+
self.cfg = cfg
|
96 |
+
self.mse_loss = nn.MSELoss()
|
97 |
+
self.blurrer = torchvision.transforms.GaussianBlur(kernel_size=(cfg.loss.tone.pixel_dist_kernel_blur,
|
98 |
+
cfg.loss.tone.pixel_dist_kernel_blur), sigma=(cfg.loss.tone.pixel_dist_sigma))
|
99 |
+
|
100 |
+
def set_image_init(self, im_init):
|
101 |
+
self.im_init = im_init.permute(2, 0, 1).unsqueeze(0)
|
102 |
+
self.init_blurred = self.blurrer(self.im_init)
|
103 |
+
|
104 |
+
|
105 |
+
def get_scheduler(self, step=None):
|
106 |
+
if step is not None:
|
107 |
+
return self.dist_loss_weight * np.exp(-(1/5)*((step-300)/(20)) ** 2)
|
108 |
+
else:
|
109 |
+
return self.dist_loss_weight
|
110 |
+
|
111 |
+
def forward(self, cur_raster, step=None):
|
112 |
+
blurred_cur = self.blurrer(cur_raster)
|
113 |
+
return self.mse_loss(self.init_blurred.detach(), blurred_cur) * self.get_scheduler(step)
|
114 |
+
|
115 |
+
|
116 |
+
class ConformalLoss:
|
117 |
+
def __init__(self, parameters: EasyDict, device: torch.device, target_letter: str, shape_groups):
|
118 |
+
self.parameters = parameters
|
119 |
+
self.target_letter = target_letter
|
120 |
+
self.shape_groups = shape_groups
|
121 |
+
self.faces = self.init_faces(device)
|
122 |
+
self.faces_roll_a = [torch.roll(self.faces[i], 1, 1) for i in range(len(self.faces))]
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
self.angles = []
|
126 |
+
self.reset()
|
127 |
+
|
128 |
+
|
129 |
+
def get_angles(self, points: torch.Tensor) -> torch.Tensor:
|
130 |
+
angles_ = []
|
131 |
+
for i in range(len(self.faces)):
|
132 |
+
triangles = points[self.faces[i]]
|
133 |
+
triangles_roll_a = points[self.faces_roll_a[i]]
|
134 |
+
edges = triangles_roll_a - triangles
|
135 |
+
length = edges.norm(dim=-1)
|
136 |
+
edges = edges / (length + 1e-1)[:, :, None]
|
137 |
+
edges_roll = torch.roll(edges, 1, 1)
|
138 |
+
cosine = torch.einsum('ned,ned->ne', edges, edges_roll)
|
139 |
+
angles = torch.arccos(cosine)
|
140 |
+
angles_.append(angles)
|
141 |
+
return angles_
|
142 |
+
|
143 |
+
def get_letter_inds(self, letter_to_insert):
|
144 |
+
for group, l in zip(self.shape_groups, self.target_letter):
|
145 |
+
if l == letter_to_insert:
|
146 |
+
letter_inds = group.shape_ids
|
147 |
+
return letter_inds[0], letter_inds[-1], len(letter_inds)
|
148 |
+
|
149 |
+
def reset(self):
|
150 |
+
points = torch.cat([point.clone().detach() for point in self.parameters.point])
|
151 |
+
self.angles = self.get_angles(points)
|
152 |
+
|
153 |
+
def init_faces(self, device: torch.device) -> torch.tensor:
|
154 |
+
faces_ = []
|
155 |
+
for j, c in enumerate(self.target_letter):
|
156 |
+
points_np = [self.parameters.point[i].clone().detach().cpu().numpy() for i in range(len(self.parameters.point))]
|
157 |
+
start_ind, end_ind, shapes_per_letter = self.get_letter_inds(c)
|
158 |
+
print(c, start_ind, end_ind)
|
159 |
+
holes = []
|
160 |
+
if shapes_per_letter > 1:
|
161 |
+
holes = points_np[start_ind+1:end_ind]
|
162 |
+
poly = Polygon(points_np[start_ind], holes=holes)
|
163 |
+
poly = poly.buffer(0)
|
164 |
+
points_np = np.concatenate(points_np)
|
165 |
+
faces = Delaunay(points_np).simplices
|
166 |
+
is_intersect = np.array([poly.contains(Point(points_np[face].mean(0))) for face in faces], dtype=np.bool)
|
167 |
+
faces_.append(torch.from_numpy(faces[is_intersect]).to(device, dtype=torch.int64))
|
168 |
+
return faces_
|
169 |
+
|
170 |
+
def __call__(self) -> torch.Tensor:
|
171 |
+
loss_angles = 0
|
172 |
+
points = torch.cat(self.parameters.point)
|
173 |
+
angles = self.get_angles(points)
|
174 |
+
for i in range(len(self.faces)):
|
175 |
+
loss_angles += (nnf.mse_loss(angles[i], self.angles[i]))
|
176 |
+
return loss_angles
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
code/save_svg.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pydiffvg
|
3 |
+
import xml.etree.ElementTree as etree
|
4 |
+
from xml.dom import minidom
|
5 |
+
def prettify(elem):
|
6 |
+
"""Return a pretty-printed XML string for the Element.
|
7 |
+
"""
|
8 |
+
rough_string = etree.tostring(elem, 'utf-8')
|
9 |
+
reparsed = minidom.parseString(rough_string)
|
10 |
+
return reparsed.toprettyxml(indent=" ")
|
11 |
+
def save_svg(filename, width, height, shapes, shape_groups, use_gamma = False, background=None):
|
12 |
+
root = etree.Element('svg')
|
13 |
+
root.set('version', '1.1')
|
14 |
+
root.set('xmlns', 'http://www.w3.org/2000/svg')
|
15 |
+
root.set('width', str(width))
|
16 |
+
root.set('height', str(height))
|
17 |
+
if background is not None:
|
18 |
+
print(f"setting background to {background}")
|
19 |
+
root.set('style', str(background))
|
20 |
+
defs = etree.SubElement(root, 'defs')
|
21 |
+
g = etree.SubElement(root, 'g')
|
22 |
+
if use_gamma:
|
23 |
+
f = etree.SubElement(defs, 'filter')
|
24 |
+
f.set('id', 'gamma')
|
25 |
+
f.set('x', '0')
|
26 |
+
f.set('y', '0')
|
27 |
+
f.set('width', '100%')
|
28 |
+
f.set('height', '100%')
|
29 |
+
gamma = etree.SubElement(f, 'feComponentTransfer')
|
30 |
+
gamma.set('color-interpolation-filters', 'sRGB')
|
31 |
+
feFuncR = etree.SubElement(gamma, 'feFuncR')
|
32 |
+
feFuncR.set('type', 'gamma')
|
33 |
+
feFuncR.set('amplitude', str(1))
|
34 |
+
feFuncR.set('exponent', str(1/2.2))
|
35 |
+
feFuncG = etree.SubElement(gamma, 'feFuncG')
|
36 |
+
feFuncG.set('type', 'gamma')
|
37 |
+
feFuncG.set('amplitude', str(1))
|
38 |
+
feFuncG.set('exponent', str(1/2.2))
|
39 |
+
feFuncB = etree.SubElement(gamma, 'feFuncB')
|
40 |
+
feFuncB.set('type', 'gamma')
|
41 |
+
feFuncB.set('amplitude', str(1))
|
42 |
+
feFuncB.set('exponent', str(1/2.2))
|
43 |
+
feFuncA = etree.SubElement(gamma, 'feFuncA')
|
44 |
+
feFuncA.set('type', 'gamma')
|
45 |
+
feFuncA.set('amplitude', str(1))
|
46 |
+
feFuncA.set('exponent', str(1/2.2))
|
47 |
+
g.set('style', 'filter:url(#gamma)')
|
48 |
+
# Store color
|
49 |
+
for i, shape_group in enumerate(shape_groups):
|
50 |
+
def add_color(shape_color, name):
|
51 |
+
if isinstance(shape_color, pydiffvg.LinearGradient):
|
52 |
+
lg = shape_color
|
53 |
+
color = etree.SubElement(defs, 'linearGradient')
|
54 |
+
color.set('id', name)
|
55 |
+
color.set('x1', str(lg.begin[0].item()/width))
|
56 |
+
color.set('y1', str(lg.begin[1].item()/height))
|
57 |
+
color.set('x2', str(lg.end[0].item()/width))
|
58 |
+
color.set('y2', str(lg.end[1].item()/height))
|
59 |
+
offsets = lg.offsets.data.cpu().numpy()
|
60 |
+
stop_colors = lg.stop_colors.data.cpu().numpy()
|
61 |
+
for j in range(offsets.shape[0]):
|
62 |
+
stop = etree.SubElement(color, 'stop')
|
63 |
+
stop.set('offset', str(offsets[j]))
|
64 |
+
c = lg.stop_colors[j, :]
|
65 |
+
stop.set('stop-color', 'rgb({}, {}, {})'.format(\
|
66 |
+
int(255 * c[0]), int(255 * c[1]), int(255 * c[2])))
|
67 |
+
stop.set('stop-opacity', '{}'.format(c[3]))
|
68 |
+
if isinstance(shape_color, pydiffvg.RadialGradient):
|
69 |
+
lg = shape_color
|
70 |
+
color = etree.SubElement(defs, 'radialGradient')
|
71 |
+
color.set('id', name)
|
72 |
+
color.set('cx', str(lg.center[0].item()/width))
|
73 |
+
color.set('cy', str(lg.center[1].item()/height))
|
74 |
+
# this only support width=height
|
75 |
+
color.set('r', str(lg.radius[0].item()/width))
|
76 |
+
offsets = lg.offsets.data.cpu().numpy()
|
77 |
+
stop_colors = lg.stop_colors.data.cpu().numpy()
|
78 |
+
for j in range(offsets.shape[0]):
|
79 |
+
stop = etree.SubElement(color, 'stop')
|
80 |
+
stop.set('offset', str(offsets[j]))
|
81 |
+
c = lg.stop_colors[j, :]
|
82 |
+
stop.set('stop-color', 'rgb({}, {}, {})'.format(\
|
83 |
+
int(255 * c[0]), int(255 * c[1]), int(255 * c[2])))
|
84 |
+
stop.set('stop-opacity', '{}'.format(c[3]))
|
85 |
+
if shape_group.fill_color is not None:
|
86 |
+
add_color(shape_group.fill_color, 'shape_{}_fill'.format(i))
|
87 |
+
if shape_group.stroke_color is not None:
|
88 |
+
add_color(shape_group.stroke_color, 'shape_{}_stroke'.format(i))
|
89 |
+
for i, shape_group in enumerate(shape_groups):
|
90 |
+
# shape = shapes[shape_group.shape_ids[0]]
|
91 |
+
for j,id in enumerate(shape_group.shape_ids):
|
92 |
+
shape = shapes[id]
|
93 |
+
if isinstance(shape, pydiffvg.Path):
|
94 |
+
if j == 0:
|
95 |
+
shape_node = etree.SubElement(g, 'path')
|
96 |
+
path_str = ''
|
97 |
+
# shape_node = etree.SubElement(g, 'path')
|
98 |
+
num_segments = shape.num_control_points.shape[0]
|
99 |
+
num_control_points = shape.num_control_points.data.cpu().numpy()
|
100 |
+
points = shape.points.data.cpu().numpy()
|
101 |
+
num_points = shape.points.shape[0]
|
102 |
+
path_str += 'M {} {}'.format(points[0, 0], points[0, 1])
|
103 |
+
point_id = 1
|
104 |
+
for j in range(0, num_segments):
|
105 |
+
if num_control_points[j] == 0:
|
106 |
+
p = point_id % num_points
|
107 |
+
path_str += ' L {} {}'.format(\
|
108 |
+
points[p, 0], points[p, 1])
|
109 |
+
point_id += 1
|
110 |
+
elif num_control_points[j] == 1:
|
111 |
+
p1 = (point_id + 1) % num_points
|
112 |
+
path_str += ' Q {} {} {} {}'.format(\
|
113 |
+
points[point_id, 0], points[point_id, 1],
|
114 |
+
points[p1, 0], points[p1, 1])
|
115 |
+
point_id += 2
|
116 |
+
elif num_control_points[j] == 2:
|
117 |
+
p2 = (point_id + 2) % num_points
|
118 |
+
path_str += ' C {} {} {} {} {} {}'.format(\
|
119 |
+
points[point_id, 0], points[point_id, 1],
|
120 |
+
points[point_id + 1, 0], points[point_id + 1, 1],
|
121 |
+
points[p2, 0], points[p2, 1])
|
122 |
+
point_id += 3
|
123 |
+
else:
|
124 |
+
assert(False)
|
125 |
+
# shape_node.set('stroke-width', str(2 * shape.stroke_width.data.cpu().item()))
|
126 |
+
shape_node.set('stroke-width', str(0)) # no strokes
|
127 |
+
if shape_group.fill_color is not None:
|
128 |
+
if isinstance(shape_group.fill_color, pydiffvg.LinearGradient):
|
129 |
+
shape_node.set('fill', 'url(#shape_{}_fill)'.format(i))
|
130 |
+
elif isinstance(shape_group.fill_color, pydiffvg.RadialGradient):
|
131 |
+
shape_node.set('fill', 'url(#shape_{}_fill)'.format(i))
|
132 |
+
else:
|
133 |
+
c = shape_group.fill_color.data.cpu().numpy()
|
134 |
+
shape_node.set('fill', 'rgb({}, {}, {})'.format(\
|
135 |
+
int(255 * c[0]), int(255 * c[1]), int(255 * c[2])))
|
136 |
+
shape_node.set('opacity', str(c[3]))
|
137 |
+
else:
|
138 |
+
shape_node.set('fill', 'none')
|
139 |
+
if shape_group.stroke_color is not None:
|
140 |
+
if isinstance(shape_group.stroke_color, pydiffvg.LinearGradient):
|
141 |
+
shape_node.set('stroke', 'url(#shape_{}_stroke)'.format(i))
|
142 |
+
elif isinstance(shape_group.stroke_color, pydiffvg.LinearGradient):
|
143 |
+
shape_node.set('stroke', 'url(#shape_{}_stroke)'.format(i))
|
144 |
+
else:
|
145 |
+
c = shape_group.stroke_color.data.cpu().numpy()
|
146 |
+
shape_node.set('stroke', 'rgb({}, {}, {})'.format(\
|
147 |
+
int(255 * c[0]), int(255 * c[1]), int(255 * c[2])))
|
148 |
+
shape_node.set('stroke-opacity', str(c[3]))
|
149 |
+
shape_node.set('stroke-linecap', 'round')
|
150 |
+
shape_node.set('stroke-linejoin', 'round')
|
151 |
+
|
152 |
+
shape_node.set('d', path_str)
|
153 |
+
|
154 |
+
with open(filename, "w") as f:
|
155 |
+
f.write(prettify(root))
|
code/ttf.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib import reload
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import bezier
|
5 |
+
import freetype as ft
|
6 |
+
import pydiffvg
|
7 |
+
import torch
|
8 |
+
import save_svg
|
9 |
+
import os.path as osp
|
10 |
+
|
11 |
+
device = torch.device("cuda" if (
|
12 |
+
torch.cuda.is_available() and torch.cuda.device_count() > 0) else "cpu")
|
13 |
+
|
14 |
+
reload(bezier)
|
15 |
+
|
16 |
+
def fix_single_svg(svg_path, all_word=False):
|
17 |
+
target_h_letter = 360
|
18 |
+
target_canvas_width, target_canvas_height = 600, 600
|
19 |
+
|
20 |
+
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_path)
|
21 |
+
|
22 |
+
letter_h = canvas_height
|
23 |
+
letter_w = canvas_width
|
24 |
+
|
25 |
+
if all_word:
|
26 |
+
if letter_w > letter_h:
|
27 |
+
scale_canvas_w = target_h_letter / letter_w
|
28 |
+
hsize = int(letter_h * scale_canvas_w)
|
29 |
+
scale_canvas_h = hsize / letter_h
|
30 |
+
else:
|
31 |
+
scale_canvas_h = target_h_letter / letter_h
|
32 |
+
wsize = int(letter_w * scale_canvas_h)
|
33 |
+
scale_canvas_w = wsize / letter_w
|
34 |
+
else:
|
35 |
+
scale_canvas_h = target_h_letter / letter_h
|
36 |
+
wsize = int(letter_w * scale_canvas_h)
|
37 |
+
scale_canvas_w = wsize / letter_w
|
38 |
+
|
39 |
+
for num, p in enumerate(shapes):
|
40 |
+
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
|
41 |
+
p.points[:, 1] = p.points[:, 1] * scale_canvas_h + target_h_letter
|
42 |
+
|
43 |
+
w_min, w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max([torch.max(p.points[:, 0]) for p in shapes])
|
44 |
+
h_min, h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max([torch.max(p.points[:, 1]) for p in shapes])
|
45 |
+
|
46 |
+
for num, p in enumerate(shapes):
|
47 |
+
p.points[:, 0] = p.points[:, 0] + target_canvas_width/2 - int(w_min + (w_max - w_min) / 2)
|
48 |
+
p.points[:, 1] = p.points[:, 1] + target_canvas_height/2 - int(h_min + (h_max - h_min) / 2)
|
49 |
+
|
50 |
+
output_path = f"{svg_path[:-4]}_scaled.svg"
|
51 |
+
save_svg.save_svg(output_path, target_canvas_width, target_canvas_height, shapes, shape_groups)
|
52 |
+
|
53 |
+
|
54 |
+
def normalize_letter_size(dest_path, font, txt):
|
55 |
+
fontname = os.path.splitext(os.path.basename(font))[0]
|
56 |
+
for i, c in enumerate(txt):
|
57 |
+
fname = f"{dest_path}/{fontname}_{c}.svg"
|
58 |
+
fname = fname.replace(" ", "_")
|
59 |
+
fix_single_svg(fname)
|
60 |
+
|
61 |
+
fname = f"{dest_path}/{fontname}_{txt}.svg"
|
62 |
+
fname = fname.replace(" ", "_")
|
63 |
+
fix_single_svg(fname, all_word=True)
|
64 |
+
|
65 |
+
|
66 |
+
def glyph_to_cubics(face, x=0):
|
67 |
+
''' Convert current font face glyph to cubic beziers'''
|
68 |
+
|
69 |
+
def linear_to_cubic(Q):
|
70 |
+
a, b = Q
|
71 |
+
return [a + (b - a) * t for t in np.linspace(0, 1, 4)]
|
72 |
+
|
73 |
+
def quadratic_to_cubic(Q):
|
74 |
+
return [Q[0],
|
75 |
+
Q[0] + (2 / 3) * (Q[1] - Q[0]),
|
76 |
+
Q[2] + (2 / 3) * (Q[1] - Q[2]),
|
77 |
+
Q[2]]
|
78 |
+
|
79 |
+
beziers = []
|
80 |
+
pt = lambda p: np.array([p.x + x, -p.y]) # Flipping here since freetype has y-up
|
81 |
+
last = lambda: beziers[-1][-1]
|
82 |
+
|
83 |
+
def move_to(a, beziers):
|
84 |
+
beziers.append([pt(a)])
|
85 |
+
|
86 |
+
def line_to(a, beziers):
|
87 |
+
Q = linear_to_cubic([last(), pt(a)])
|
88 |
+
beziers[-1] += Q[1:]
|
89 |
+
|
90 |
+
def conic_to(a, b, beziers):
|
91 |
+
Q = quadratic_to_cubic([last(), pt(a), pt(b)])
|
92 |
+
beziers[-1] += Q[1:]
|
93 |
+
|
94 |
+
def cubic_to(a, b, c, beziers):
|
95 |
+
beziers[-1] += [pt(a), pt(b), pt(c)]
|
96 |
+
|
97 |
+
face.glyph.outline.decompose(beziers, move_to=move_to, line_to=line_to, conic_to=conic_to, cubic_to=cubic_to)
|
98 |
+
beziers = [np.array(C).astype(float) for C in beziers]
|
99 |
+
return beziers
|
100 |
+
|
101 |
+
|
102 |
+
def font_string_to_beziers(font, txt, size=30, spacing=1.0, merge=True, target_control=None):
|
103 |
+
''' Load a font and convert the outlines for a given string to cubic bezier curves,
|
104 |
+
if merge is True, simply return a list of all bezier curves,
|
105 |
+
otherwise return a list of lists with the bezier curves for each glyph'''
|
106 |
+
|
107 |
+
face = ft.Face(font)
|
108 |
+
face.set_char_size(64 * size)
|
109 |
+
slot = face.glyph
|
110 |
+
|
111 |
+
x = 0
|
112 |
+
beziers = []
|
113 |
+
previous = 0
|
114 |
+
for c in txt:
|
115 |
+
face.load_char(c, ft.FT_LOAD_DEFAULT | ft.FT_LOAD_NO_BITMAP)
|
116 |
+
bez = glyph_to_cubics(face, x)
|
117 |
+
|
118 |
+
# Check number of control points if desired
|
119 |
+
if target_control is not None:
|
120 |
+
if c in target_control.keys():
|
121 |
+
nctrl = np.sum([len(C) for C in bez])
|
122 |
+
while nctrl < target_control[c]:
|
123 |
+
longest = np.max(
|
124 |
+
sum([[bezier.approx_arc_length(b) for b in bezier.chain_to_beziers(C)] for C in bez], []))
|
125 |
+
thresh = longest * 0.5
|
126 |
+
bez = [bezier.subdivide_bezier_chain(C, thresh) for C in bez]
|
127 |
+
nctrl = np.sum([len(C) for C in bez])
|
128 |
+
print(nctrl)
|
129 |
+
|
130 |
+
if merge:
|
131 |
+
beziers += bez
|
132 |
+
else:
|
133 |
+
beziers.append(bez)
|
134 |
+
|
135 |
+
kerning = face.get_kerning(previous, c)
|
136 |
+
x += (slot.advance.x + kerning.x) * spacing
|
137 |
+
previous = c
|
138 |
+
|
139 |
+
return beziers
|
140 |
+
|
141 |
+
|
142 |
+
def bezier_chain_to_commands(C, closed=True):
|
143 |
+
curves = bezier.chain_to_beziers(C)
|
144 |
+
cmds = 'M %f %f ' % (C[0][0], C[0][1])
|
145 |
+
n = len(curves)
|
146 |
+
for i, bez in enumerate(curves):
|
147 |
+
if i == n - 1 and closed:
|
148 |
+
cmds += 'C %f %f %f %f %f %fz ' % (*bez[1], *bez[2], *bez[3])
|
149 |
+
else:
|
150 |
+
cmds += 'C %f %f %f %f %f %f ' % (*bez[1], *bez[2], *bez[3])
|
151 |
+
return cmds
|
152 |
+
|
153 |
+
|
154 |
+
def count_cp(file_name, font_name):
|
155 |
+
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(file_name)
|
156 |
+
p_counter = 0
|
157 |
+
for path in shapes:
|
158 |
+
p_counter += path.points.shape[0]
|
159 |
+
print(f"TOTAL CP: [{p_counter}]")
|
160 |
+
return p_counter
|
161 |
+
|
162 |
+
|
163 |
+
def write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path):
|
164 |
+
cmds = ''
|
165 |
+
svg = header
|
166 |
+
|
167 |
+
path = '<g><path d="'
|
168 |
+
for C in beziers:
|
169 |
+
if subdivision_thresh is not None:
|
170 |
+
print('subd')
|
171 |
+
C = bezier.subdivide_bezier_chain(C, subdivision_thresh)
|
172 |
+
cmds += bezier_chain_to_commands(C, True)
|
173 |
+
path += cmds + '"/>\n'
|
174 |
+
svg += path + '</g></svg>\n'
|
175 |
+
|
176 |
+
fname = f"{dest_path}/{fontname}_{c}.svg"
|
177 |
+
fname = fname.replace(" ", "_")
|
178 |
+
f = open(fname, 'w')
|
179 |
+
f.write(svg)
|
180 |
+
f.close()
|
181 |
+
return fname, path
|
182 |
+
|
183 |
+
|
184 |
+
def font_string_to_svgs(dest_path, font, txt, size=30, spacing=1.0, target_control=None, subdivision_thresh=None):
|
185 |
+
|
186 |
+
fontname = os.path.splitext(os.path.basename(font))[0]
|
187 |
+
glyph_beziers = font_string_to_beziers(font, txt, size, spacing, merge=False, target_control=target_control)
|
188 |
+
if not os.path.isdir(dest_path):
|
189 |
+
os.mkdir(dest_path)
|
190 |
+
# Compute boundig box
|
191 |
+
points = np.vstack(sum(glyph_beziers, []))
|
192 |
+
lt = np.min(points, axis=0)
|
193 |
+
rb = np.max(points, axis=0)
|
194 |
+
size = rb - lt
|
195 |
+
|
196 |
+
sizestr = 'width="%.1f" height="%.1f"' % (size[0], size[1])
|
197 |
+
boxstr = ' viewBox="%.1f %.1f %.1f %.1f"' % (lt[0], lt[1], size[0], size[1])
|
198 |
+
header = '''<?xml version="1.0" encoding="utf-8"?>
|
199 |
+
<svg xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" baseProfile="full" '''
|
200 |
+
header += sizestr
|
201 |
+
header += boxstr
|
202 |
+
header += '>\n<defs/>\n'
|
203 |
+
|
204 |
+
svg_all = header
|
205 |
+
|
206 |
+
for i, (c, beziers) in enumerate(zip(txt, glyph_beziers)):
|
207 |
+
print(f"==== {c} ====")
|
208 |
+
fname, path = write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path)
|
209 |
+
|
210 |
+
num_cp = count_cp(fname, fontname)
|
211 |
+
print(num_cp)
|
212 |
+
print(font, c)
|
213 |
+
# Add to global svg
|
214 |
+
svg_all += path + '</g>\n'
|
215 |
+
|
216 |
+
# Save global svg
|
217 |
+
svg_all += '</svg>\n'
|
218 |
+
fname = f"{dest_path}/{fontname}_{txt}.svg"
|
219 |
+
fname = fname.replace(" ", "_")
|
220 |
+
f = open(fname, 'w')
|
221 |
+
f.write(svg_all)
|
222 |
+
f.close()
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == '__main__':
|
228 |
+
|
229 |
+
fonts = ["KaushanScript-Regular"]
|
230 |
+
level_of_cc = 1
|
231 |
+
|
232 |
+
if level_of_cc == 0:
|
233 |
+
target_cp = None
|
234 |
+
|
235 |
+
else:
|
236 |
+
target_cp = {"A": 120, "B": 120, "C": 100, "D": 100,
|
237 |
+
"E": 120, "F": 120, "G": 120, "H": 120,
|
238 |
+
"I": 35, "J": 80, "K": 100, "L": 80,
|
239 |
+
"M": 100, "N": 100, "O": 100, "P": 120,
|
240 |
+
"Q": 120, "R": 130, "S": 110, "T": 90,
|
241 |
+
"U": 100, "V": 100, "W": 100, "X": 130,
|
242 |
+
"Y": 120, "Z": 120,
|
243 |
+
"a": 120, "b": 120, "c": 100, "d": 100,
|
244 |
+
"e": 120, "f": 120, "g": 120, "h": 120,
|
245 |
+
"i": 35, "j": 80, "k": 100, "l": 80,
|
246 |
+
"m": 100, "n": 100, "o": 100, "p": 120,
|
247 |
+
"q": 120, "r": 130, "s": 110, "t": 90,
|
248 |
+
"u": 100, "v": 100, "w": 100, "x": 130,
|
249 |
+
"y": 120, "z": 120
|
250 |
+
}
|
251 |
+
|
252 |
+
target_cp = {k: v * level_of_cc for k, v in target_cp.items()}
|
253 |
+
|
254 |
+
for f in fonts:
|
255 |
+
print(f"======= {f} =======")
|
256 |
+
font_path = f"data/fonts/{f}.ttf"
|
257 |
+
output_path = f"data/init"
|
258 |
+
txt = "BUNNY"
|
259 |
+
subdivision_thresh = None
|
260 |
+
font_string_to_svgs(output_path, font_path, txt, target_control=target_cp,
|
261 |
+
subdivision_thresh=subdivision_thresh)
|
262 |
+
normalize_letter_size(output_path, font_path, txt)
|
263 |
+
|
264 |
+
print("DONE")
|
code/utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
from torch import nn
|
5 |
+
import kornia.augmentation as K
|
6 |
+
import pydiffvg
|
7 |
+
import save_svg
|
8 |
+
import cv2
|
9 |
+
from ttf import font_string_to_svgs, normalize_letter_size
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
def edict_2_dict(x):
|
15 |
+
if isinstance(x, dict):
|
16 |
+
xnew = {}
|
17 |
+
for k in x:
|
18 |
+
xnew[k] = edict_2_dict(x[k])
|
19 |
+
return xnew
|
20 |
+
elif isinstance(x, list):
|
21 |
+
xnew = []
|
22 |
+
for i in range(len(x)):
|
23 |
+
xnew.append( edict_2_dict(x[i]))
|
24 |
+
return xnew
|
25 |
+
else:
|
26 |
+
return x
|
27 |
+
|
28 |
+
|
29 |
+
def check_and_create_dir(path):
|
30 |
+
pathdir = osp.split(path)[0]
|
31 |
+
if osp.isdir(pathdir):
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
os.makedirs(pathdir)
|
35 |
+
|
36 |
+
|
37 |
+
def update(d, u):
|
38 |
+
"""https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth"""
|
39 |
+
for k, v in u.items():
|
40 |
+
if isinstance(v, collections.abc.Mapping):
|
41 |
+
d[k] = update(d.get(k, {}), v)
|
42 |
+
else:
|
43 |
+
d[k] = v
|
44 |
+
return d
|
45 |
+
|
46 |
+
|
47 |
+
def preprocess(font, word, letter, level_of_cc=1):
|
48 |
+
|
49 |
+
if level_of_cc == 0:
|
50 |
+
target_cp = None
|
51 |
+
else:
|
52 |
+
target_cp = {"A": 120, "B": 120, "C": 100, "D": 100,
|
53 |
+
"E": 120, "F": 120, "G": 120, "H": 120,
|
54 |
+
"I": 35, "J": 80, "K": 100, "L": 80,
|
55 |
+
"M": 100, "N": 100, "O": 100, "P": 120,
|
56 |
+
"Q": 120, "R": 130, "S": 110, "T": 90,
|
57 |
+
"U": 100, "V": 100, "W": 100, "X": 130,
|
58 |
+
"Y": 120, "Z": 120,
|
59 |
+
"a": 120, "b": 120, "c": 100, "d": 100,
|
60 |
+
"e": 120, "f": 120, "g": 120, "h": 120,
|
61 |
+
"i": 35, "j": 80, "k": 100, "l": 80,
|
62 |
+
"m": 100, "n": 100, "o": 100, "p": 120,
|
63 |
+
"q": 120, "r": 130, "s": 110, "t": 90,
|
64 |
+
"u": 100, "v": 100, "w": 100, "x": 130,
|
65 |
+
"y": 120, "z": 120
|
66 |
+
}
|
67 |
+
target_cp = {k: v * level_of_cc for k, v in target_cp.items()}
|
68 |
+
|
69 |
+
print(f"======= {font} =======")
|
70 |
+
font_path = f"code/data/fonts/{font}.ttf"
|
71 |
+
init_path = f"code/data/init"
|
72 |
+
subdivision_thresh = None
|
73 |
+
font_string_to_svgs(init_path, font_path, word, target_control=target_cp,
|
74 |
+
subdivision_thresh=subdivision_thresh)
|
75 |
+
normalize_letter_size(init_path, font_path, word)
|
76 |
+
|
77 |
+
# optimaize two adjacent letters
|
78 |
+
if len(letter) > 1:
|
79 |
+
subdivision_thresh = None
|
80 |
+
font_string_to_svgs(init_path, font_path, letter, target_control=target_cp,
|
81 |
+
subdivision_thresh=subdivision_thresh)
|
82 |
+
normalize_letter_size(init_path, font_path, letter)
|
83 |
+
|
84 |
+
print("Done preprocess")
|
85 |
+
|
86 |
+
|
87 |
+
def get_data_augs(cut_size):
|
88 |
+
augmentations = []
|
89 |
+
augmentations.append(K.RandomPerspective(distortion_scale=0.5, p=0.7))
|
90 |
+
augmentations.append(K.RandomCrop(size=(cut_size, cut_size), pad_if_needed=True, padding_mode='reflect', p=1.0))
|
91 |
+
return nn.Sequential(*augmentations)
|
92 |
+
|
93 |
+
|
94 |
+
'''pytorch adaptation of https://github.com/google/mipnerf'''
|
95 |
+
def learning_rate_decay(step,
|
96 |
+
lr_init,
|
97 |
+
lr_final,
|
98 |
+
max_steps,
|
99 |
+
lr_delay_steps=0,
|
100 |
+
lr_delay_mult=1):
|
101 |
+
"""Continuous learning rate decay function.
|
102 |
+
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
|
103 |
+
is log-linearly interpolated elsewhere (equivalent to exponential decay).
|
104 |
+
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
|
105 |
+
function of lr_delay_mult, such that the initial learning rate is
|
106 |
+
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
|
107 |
+
to the normal learning rate when steps>lr_delay_steps.
|
108 |
+
Args:
|
109 |
+
step: int, the current optimization step.
|
110 |
+
lr_init: float, the initial learning rate.
|
111 |
+
lr_final: float, the final learning rate.
|
112 |
+
max_steps: int, the number of steps during optimization.
|
113 |
+
lr_delay_steps: int, the number of steps to delay the full learning rate.
|
114 |
+
lr_delay_mult: float, the multiplier on the rate when delaying it.
|
115 |
+
Returns:
|
116 |
+
lr: the learning for current step 'step'.
|
117 |
+
"""
|
118 |
+
if lr_delay_steps > 0:
|
119 |
+
# A kind of reverse cosine decay.
|
120 |
+
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
|
121 |
+
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1))
|
122 |
+
else:
|
123 |
+
delay_rate = 1.
|
124 |
+
t = np.clip(step / max_steps, 0, 1)
|
125 |
+
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
|
126 |
+
return delay_rate * log_lerp
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
def save_image(img, filename, gamma=1):
|
131 |
+
check_and_create_dir(filename)
|
132 |
+
imshow = img.detach().cpu()
|
133 |
+
pydiffvg.imwrite(imshow, filename, gamma=gamma)
|
134 |
+
|
135 |
+
|
136 |
+
def get_letter_ids(letter, word, shape_groups):
|
137 |
+
for group, l in zip(shape_groups, word):
|
138 |
+
if l == letter:
|
139 |
+
return group.shape_ids
|
140 |
+
|
141 |
+
|
142 |
+
def combine_word(word, letter, font, experiment_dir):
|
143 |
+
word_svg_scaled = f"./code/data/init/{font}_{word}_scaled.svg"
|
144 |
+
canvas_width_word, canvas_height_word, shapes_word, shape_groups_word = pydiffvg.svg_to_scene(word_svg_scaled)
|
145 |
+
letter_ids = []
|
146 |
+
for l in letter:
|
147 |
+
letter_ids += get_letter_ids(l, word, shape_groups_word)
|
148 |
+
|
149 |
+
w_min, w_max = min([torch.min(shapes_word[ids].points[:, 0]) for ids in letter_ids]), max(
|
150 |
+
[torch.max(shapes_word[ids].points[:, 0]) for ids in letter_ids])
|
151 |
+
h_min, h_max = min([torch.min(shapes_word[ids].points[:, 1]) for ids in letter_ids]), max(
|
152 |
+
[torch.max(shapes_word[ids].points[:, 1]) for ids in letter_ids])
|
153 |
+
|
154 |
+
c_w = (-w_min+w_max)/2
|
155 |
+
c_h = (-h_min+h_max)/2
|
156 |
+
|
157 |
+
svg_result = os.path.join(experiment_dir, "output-svg", "output.svg")
|
158 |
+
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_result)
|
159 |
+
|
160 |
+
out_w_min, out_w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max(
|
161 |
+
[torch.max(p.points[:, 0]) for p in shapes])
|
162 |
+
out_h_min, out_h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max(
|
163 |
+
[torch.max(p.points[:, 1]) for p in shapes])
|
164 |
+
|
165 |
+
out_c_w = (-out_w_min+out_w_max)/2
|
166 |
+
out_c_h = (-out_h_min+out_h_max)/2
|
167 |
+
|
168 |
+
scale_canvas_w = (w_max - w_min) / (out_w_max - out_w_min)
|
169 |
+
scale_canvas_h = (h_max - h_min) / (out_h_max - out_h_min)
|
170 |
+
|
171 |
+
if scale_canvas_h > scale_canvas_w:
|
172 |
+
wsize = int((out_w_max - out_w_min) * scale_canvas_h)
|
173 |
+
scale_canvas_w = wsize / (out_w_max - out_w_min)
|
174 |
+
shift_w = -out_c_w * scale_canvas_w + c_w
|
175 |
+
else:
|
176 |
+
hsize = int((out_h_max - out_h_min) * scale_canvas_w)
|
177 |
+
scale_canvas_h = hsize / (out_h_max - out_h_min)
|
178 |
+
shift_h = -out_c_h * scale_canvas_h + c_h
|
179 |
+
|
180 |
+
for num, p in enumerate(shapes):
|
181 |
+
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
|
182 |
+
p.points[:, 1] = p.points[:, 1] * scale_canvas_h
|
183 |
+
if scale_canvas_h > scale_canvas_w:
|
184 |
+
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min + shift_w
|
185 |
+
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min
|
186 |
+
else:
|
187 |
+
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min
|
188 |
+
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min + shift_h
|
189 |
+
|
190 |
+
|
191 |
+
for j, s in enumerate(letter_ids):
|
192 |
+
shapes_word[s] = shapes[j]
|
193 |
+
|
194 |
+
save_svg.save_svg(
|
195 |
+
f"{experiment_dir}/{font}_{word}_{letter}.svg", canvas_width, canvas_height, shapes_word,
|
196 |
+
shape_groups_word)
|
197 |
+
|
198 |
+
# render = pydiffvg.RenderFunction.apply
|
199 |
+
# scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width, canvas_height, shapes_word, shape_groups_word)
|
200 |
+
# img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)
|
201 |
+
# img = img[:, :, 3:4] * img[:, :, :3] + \
|
202 |
+
# torch.ones(img.shape[0], img.shape[1], 3, device="cuda") * (1 - img[:, :, 3:4])
|
203 |
+
# img = img[:, :, :3]
|
204 |
+
# save_image(img, f"{experiment_dir}/{font}_{word}_{letter}.png")
|
205 |
+
|
206 |
+
def create_video(num_iter, experiment_dir, video_frame_freq):
|
207 |
+
img_array = []
|
208 |
+
for ii in range(0, num_iter):
|
209 |
+
if ii % video_frame_freq == 0 or ii == num_iter - 1:
|
210 |
+
filename = os.path.join(
|
211 |
+
experiment_dir, "video-png", f"iter{ii:04d}.png")
|
212 |
+
img = cv2.imread(filename)
|
213 |
+
img_array.append(img)
|
214 |
+
|
215 |
+
video_name = os.path.join(
|
216 |
+
experiment_dir, "video.mp4")
|
217 |
+
check_and_create_dir(video_name)
|
218 |
+
out = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'mp4v'), 30.0, (600, 600))
|
219 |
+
for iii in range(len(img_array)):
|
220 |
+
out.write(img_array[iii])
|
221 |
+
out.release()
|
images/DeliusUnicase-Regular.png
ADDED
images/HobeauxRococeaux-Sherman.png
ADDED
images/IndieFlower-Regular.png
ADDED
images/KaushanScript-Regular.png
ADDED
images/LuckiestGuy-Regular.png
ADDED
images/Noteworthy-Bold.png
ADDED
images/Quicksand.png
ADDED
images/Saira-Regular.png
ADDED
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-dev
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch==1.12.1+cu113
|
3 |
+
torchvision==0.13.1+cu113
|
4 |
+
|
5 |
+
cmake
|
6 |
+
numpy
|
7 |
+
scikit-image
|
8 |
+
ffmpeg
|
9 |
+
svgwrite
|
10 |
+
svgpathtools
|
11 |
+
cssutils
|
12 |
+
numba
|
13 |
+
torch-tools
|
14 |
+
scikit-fmm
|
15 |
+
easydict
|
16 |
+
visdom
|
17 |
+
opencv-python==4.5.4.60
|
18 |
+
|
19 |
+
diffusers==0.8
|
20 |
+
transformers
|
21 |
+
scipy
|
22 |
+
ftfy
|
23 |
+
accelerate
|
24 |
+
|
25 |
+
freetype-py
|
26 |
+
shapely
|
27 |
+
kornia==0.6.8
|