SemaSci commited on
Commit
d6c9e09
·
verified ·
1 Parent(s): 1a6ef1d

Create app_wrong_deepseek.py

Browse files
Files changed (1) hide show
  1. app_wrong_deepseek.py +318 -0
app_wrong_deepseek.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # не запускается, ошибка с кешем, отложил пока
2
+
3
+ # это файл только с LoRA, без ControlNet и IpAdapter
4
+
5
+ import gradio as gr
6
+ import numpy as np
7
+ import random
8
+
9
+ # import spaces #[uncomment to use ZeroGPU]
10
+ from diffusers import DiffusionPipeline
11
+ import torch
12
+
13
+ from peft import PeftModel, LoraConfig
14
+ import os
15
+
16
+ # Добавляем глобальный кэш для пайплайнов
17
+ pipe_cache = {}
18
+
19
+ def get_lora_sd_pipeline(
20
+ ckpt_dir='./lora_logos',
21
+ base_model_name_or_path=None,
22
+ dtype=torch.float16,
23
+ adapter_name="default"
24
+ ):
25
+
26
+ unet_sub_dir = os.path.join(ckpt_dir, "unet")
27
+ text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
28
+
29
+ if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
30
+ config = LoraConfig.from_pretrained(text_encoder_sub_dir)
31
+ base_model_name_or_path = config.base_model_name_or_path
32
+
33
+ if base_model_name_or_path is None:
34
+ raise ValueError("Please specify the base model name or path")
35
+
36
+ pipe = DiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
37
+ before_params = pipe.unet.parameters()
38
+ # pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
39
+ # Исправляем загрузку конфигурации
40
+ config = LoraConfig.from_pretrained(unet_sub_dir)
41
+
42
+ pipe.unet = PeftModel.from_pretrained(
43
+ pipe.unet,
44
+ unet_sub_dir,
45
+ adapter_name=adapter_name,
46
+ config=config # Явно передаем конфигурацию
47
+ )
48
+
49
+ pipe.unet.set_adapter(adapter_name)
50
+ after_params = pipe.unet.parameters()
51
+ print("UNet Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
52
+
53
+ if os.path.exists(text_encoder_sub_dir):
54
+ pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
55
+
56
+ if dtype in (torch.float16, torch.bfloat16):
57
+ pipe.unet.half()
58
+ if pipe.text_encoder is not None:
59
+ pipe.text_encoder.half()
60
+
61
+ return pipe
62
+
63
+ def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
64
+ tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
65
+ chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
66
+
67
+ with torch.no_grad():
68
+ embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
69
+
70
+ return torch.cat(embeds, dim=1)
71
+
72
+ def align_embeddings(prompt_embeds, negative_prompt_embeds):
73
+ max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
74
+ return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
75
+ torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
76
+
77
+ device = "cuda" if torch.cuda.is_available() else "cpu"
78
+ #model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
79
+ model_id_default = "sd-legacy/stable-diffusion-v1-5"
80
+ model_dropdown = ['stabilityai/sdxl-turbo', 'CompVis/stable-diffusion-v1-4', 'sd-legacy/stable-diffusion-v1-5' ]
81
+
82
+ model_lora_default = "lora_pussinboots_logos"
83
+ model_lora_dropdown = ['lora_lady_and_cats_logos', 'lora_pussinboots_logos' ]
84
+
85
+ if torch.cuda.is_available():
86
+ torch_dtype = torch.float16
87
+ else:
88
+ torch_dtype = torch.float32
89
+
90
+ # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
91
+ # pipe = pipe.to(device)
92
+
93
+ MAX_SEED = np.iinfo(np.int32).max
94
+ MAX_IMAGE_SIZE = 1024
95
+
96
+
97
+ # @spaces.GPU #[uncomment to use ZeroGPU]
98
+ def infer(
99
+ prompt,
100
+ negative_prompt,
101
+ randomize_seed,
102
+ width=512,
103
+ height=512,
104
+ model_repo_id=model_id_default,
105
+ seed=42,
106
+ guidance_scale=7,
107
+ num_inference_steps=20,
108
+ model_lora_id=model_lora_default,
109
+ lora_scale=0.5,
110
+ progress=gr.Progress(track_tqdm=True),
111
+ ):
112
+
113
+ global pipe_cache
114
+
115
+ if randomize_seed:
116
+ seed = random.randint(0, MAX_SEED)
117
+
118
+ generator = torch.Generator().manual_seed(seed)
119
+
120
+ # Кэширование пайплайнов
121
+ cache_key = f"{model_repo_id}_{model_lora_id}"
122
+ if cache_key not in pipe_cache:
123
+ if model_repo_id != model_id_default:
124
+ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
125
+ prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
126
+ negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
127
+ prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
128
+ else:
129
+ pipe = get_lora_sd_pipeline(
130
+ ckpt_dir='./'+model_lora_id,
131
+ base_model_name_or_path=model_id_default,
132
+ dtype=torch_dtype
133
+ ).to(device)
134
+
135
+ pipe_cache[cache_key] = pipe
136
+ else:
137
+ pipe = pipe_cache[cache_key]
138
+
139
+ # Динамическое применение масштаба LoRA
140
+ if model_repo_id == model_id_default:
141
+ # Убираем fuse_lora()
142
+ # pipe.fuse_lora(lora_scale=lora_scale) # Закомментировали проблемную строку
143
+
144
+ # Вместо этого устанавливаем адаптеры динамически
145
+ pipe.unet.set_adapters(
146
+ [model_lora_id],
147
+ adapter_weights=[lora_scale]
148
+ )
149
+ if hasattr(pipe, 'text_encoder') and pipe.text_encoder is not None:
150
+ pipe.text_encoder.set_adapters(
151
+ [model_lora_id],
152
+ adapter_weights=[lora_scale]
153
+ )
154
+
155
+ print(f"Active adapters - UNet: {pipe.unet.active_adapters}, Text Encoder: {pipe.text_encoder.active_adapters if hasattr(pipe, 'text_encoder') else None}")
156
+ print("UNet first layer weights:", pipe.unet.base_model.model[0].weight.data[0,0,:5])
157
+ print(f"LoRA scale applied: {lora_scale}")
158
+
159
+
160
+ # на вызов pipe с эмбеддингами
161
+ params = {
162
+ 'prompt_embeds': prompt_embeds,
163
+ 'negative_prompt_embeds': negative_prompt_embeds,
164
+ 'guidance_scale': guidance_scale,
165
+ 'num_inference_steps': num_inference_steps,
166
+ 'width': width,
167
+ 'height': height,
168
+ 'generator': generator,
169
+ }
170
+
171
+ return pipe(**params).images[0], seed
172
+
173
+ # return image, seed
174
+
175
+
176
+ examples = [
177
+ "Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
178
+ "A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
179
+ "A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
180
+ "A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
181
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
182
+ "An astronaut riding a green horse",
183
+ "A delicious ceviche cheesecake slice",
184
+ ]
185
+
186
+ css = """
187
+ #col-container {
188
+ margin: 0 auto;
189
+ max-width: 640px;
190
+ }
191
+ """
192
+
193
+ with gr.Blocks(css=css) as demo:
194
+ with gr.Column(elem_id="col-container"):
195
+ gr.Markdown(" # Text-to-Image SemaSci Template")
196
+
197
+ with gr.Row():
198
+ prompt = gr.Text(
199
+ label="Prompt",
200
+ show_label=False,
201
+ max_lines=1,
202
+ placeholder="Enter your prompt",
203
+ container=False,
204
+ )
205
+
206
+ run_button = gr.Button("Run", scale=0, variant="primary")
207
+
208
+ result = gr.Image(label="Result", show_label=False)
209
+
210
+ with gr.Accordion("Advanced Settings", open=False):
211
+ # model_repo_id = gr.Text(
212
+ # label="Model Id",
213
+ # max_lines=1,
214
+ # placeholder="Choose model",
215
+ # visible=True,
216
+ # value=model_repo_id,
217
+ # )
218
+ model_repo_id = gr.Dropdown(
219
+ label="Model Id",
220
+ choices=model_dropdown,
221
+ info="Choose model",
222
+ visible=True,
223
+ allow_custom_value=True,
224
+ # value=model_repo_id,
225
+ value=model_id_default,
226
+ )
227
+
228
+ negative_prompt = gr.Text(
229
+ label="Negative prompt",
230
+ max_lines=1,
231
+ placeholder="Enter a negative prompt",
232
+ visible=True,
233
+ )
234
+
235
+ seed = gr.Slider(
236
+ label="Seed",
237
+ minimum=0,
238
+ maximum=MAX_SEED,
239
+ step=1,
240
+ value=42,
241
+ )
242
+
243
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
244
+
245
+ with gr.Row():
246
+ width = gr.Slider(
247
+ label="Width",
248
+ minimum=256,
249
+ maximum=MAX_IMAGE_SIZE,
250
+ step=32,
251
+ value=256, # Replace with defaults that work for your model
252
+ )
253
+
254
+ height = gr.Slider(
255
+ label="Height",
256
+ minimum=256,
257
+ maximum=MAX_IMAGE_SIZE,
258
+ step=32,
259
+ value=256, # Replace with defaults that work for your model
260
+ )
261
+
262
+ with gr.Row():
263
+ guidance_scale = gr.Slider(
264
+ label="Guidance scale",
265
+ minimum=0.0,
266
+ maximum=10.0,
267
+ step=0.1,
268
+ value=7.0, # Replace with defaults that work for your model
269
+ )
270
+
271
+ num_inference_steps = gr.Slider(
272
+ label="Number of inference steps",
273
+ minimum=1,
274
+ maximum=50,
275
+ step=1,
276
+ value=20, # Replace with defaults that work for your model
277
+ )
278
+
279
+ with gr.Row():
280
+ model_lora_id = gr.Dropdown(
281
+ label="Lora Id",
282
+ choices=model_lora_dropdown,
283
+ info="Choose LoRA model",
284
+ visible=True,
285
+ allow_custom_value=True,
286
+ value=model_lora_default,
287
+ )
288
+
289
+ lora_scale = gr.Slider(
290
+ label="LoRA scale",
291
+ minimum=0.0,
292
+ maximum=1.0,
293
+ step=0.1,
294
+ value=0.5,
295
+ )
296
+
297
+ gr.Examples(examples=examples, inputs=[prompt])
298
+ gr.on(
299
+ triggers=[run_button.click, prompt.submit],
300
+ fn=infer,
301
+ inputs=[
302
+ prompt,
303
+ negative_prompt,
304
+ randomize_seed,
305
+ width,
306
+ height,
307
+ model_repo_id,
308
+ seed,
309
+ guidance_scale,
310
+ num_inference_steps,
311
+ model_lora_id,
312
+ lora_scale,
313
+ ],
314
+ outputs=[result, seed],
315
+ )
316
+
317
+ if __name__ == "__main__":
318
+ demo.launch()