Spaces:
Sleeping
Sleeping
Create app_wrong_deepseek.py
Browse files- app_wrong_deepseek.py +318 -0
app_wrong_deepseek.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# не запускается, ошибка с кешем, отложил пока
|
2 |
+
|
3 |
+
# это файл только с LoRA, без ControlNet и IpAdapter
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
|
9 |
+
# import spaces #[uncomment to use ZeroGPU]
|
10 |
+
from diffusers import DiffusionPipeline
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from peft import PeftModel, LoraConfig
|
14 |
+
import os
|
15 |
+
|
16 |
+
# Добавляем глобальный кэш для пайплайнов
|
17 |
+
pipe_cache = {}
|
18 |
+
|
19 |
+
def get_lora_sd_pipeline(
|
20 |
+
ckpt_dir='./lora_logos',
|
21 |
+
base_model_name_or_path=None,
|
22 |
+
dtype=torch.float16,
|
23 |
+
adapter_name="default"
|
24 |
+
):
|
25 |
+
|
26 |
+
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
27 |
+
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
28 |
+
|
29 |
+
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
|
30 |
+
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
|
31 |
+
base_model_name_or_path = config.base_model_name_or_path
|
32 |
+
|
33 |
+
if base_model_name_or_path is None:
|
34 |
+
raise ValueError("Please specify the base model name or path")
|
35 |
+
|
36 |
+
pipe = DiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
|
37 |
+
before_params = pipe.unet.parameters()
|
38 |
+
# pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
39 |
+
# Исправляем загрузку конфигурации
|
40 |
+
config = LoraConfig.from_pretrained(unet_sub_dir)
|
41 |
+
|
42 |
+
pipe.unet = PeftModel.from_pretrained(
|
43 |
+
pipe.unet,
|
44 |
+
unet_sub_dir,
|
45 |
+
adapter_name=adapter_name,
|
46 |
+
config=config # Явно передаем конфигурацию
|
47 |
+
)
|
48 |
+
|
49 |
+
pipe.unet.set_adapter(adapter_name)
|
50 |
+
after_params = pipe.unet.parameters()
|
51 |
+
print("UNet Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
|
52 |
+
|
53 |
+
if os.path.exists(text_encoder_sub_dir):
|
54 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
55 |
+
|
56 |
+
if dtype in (torch.float16, torch.bfloat16):
|
57 |
+
pipe.unet.half()
|
58 |
+
if pipe.text_encoder is not None:
|
59 |
+
pipe.text_encoder.half()
|
60 |
+
|
61 |
+
return pipe
|
62 |
+
|
63 |
+
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
|
64 |
+
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
65 |
+
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
|
69 |
+
|
70 |
+
return torch.cat(embeds, dim=1)
|
71 |
+
|
72 |
+
def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
73 |
+
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
|
74 |
+
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
75 |
+
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
76 |
+
|
77 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
78 |
+
#model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
79 |
+
model_id_default = "sd-legacy/stable-diffusion-v1-5"
|
80 |
+
model_dropdown = ['stabilityai/sdxl-turbo', 'CompVis/stable-diffusion-v1-4', 'sd-legacy/stable-diffusion-v1-5' ]
|
81 |
+
|
82 |
+
model_lora_default = "lora_pussinboots_logos"
|
83 |
+
model_lora_dropdown = ['lora_lady_and_cats_logos', 'lora_pussinboots_logos' ]
|
84 |
+
|
85 |
+
if torch.cuda.is_available():
|
86 |
+
torch_dtype = torch.float16
|
87 |
+
else:
|
88 |
+
torch_dtype = torch.float32
|
89 |
+
|
90 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
91 |
+
# pipe = pipe.to(device)
|
92 |
+
|
93 |
+
MAX_SEED = np.iinfo(np.int32).max
|
94 |
+
MAX_IMAGE_SIZE = 1024
|
95 |
+
|
96 |
+
|
97 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
98 |
+
def infer(
|
99 |
+
prompt,
|
100 |
+
negative_prompt,
|
101 |
+
randomize_seed,
|
102 |
+
width=512,
|
103 |
+
height=512,
|
104 |
+
model_repo_id=model_id_default,
|
105 |
+
seed=42,
|
106 |
+
guidance_scale=7,
|
107 |
+
num_inference_steps=20,
|
108 |
+
model_lora_id=model_lora_default,
|
109 |
+
lora_scale=0.5,
|
110 |
+
progress=gr.Progress(track_tqdm=True),
|
111 |
+
):
|
112 |
+
|
113 |
+
global pipe_cache
|
114 |
+
|
115 |
+
if randomize_seed:
|
116 |
+
seed = random.randint(0, MAX_SEED)
|
117 |
+
|
118 |
+
generator = torch.Generator().manual_seed(seed)
|
119 |
+
|
120 |
+
# Кэширование пайплайнов
|
121 |
+
cache_key = f"{model_repo_id}_{model_lora_id}"
|
122 |
+
if cache_key not in pipe_cache:
|
123 |
+
if model_repo_id != model_id_default:
|
124 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
|
125 |
+
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
126 |
+
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
127 |
+
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
128 |
+
else:
|
129 |
+
pipe = get_lora_sd_pipeline(
|
130 |
+
ckpt_dir='./'+model_lora_id,
|
131 |
+
base_model_name_or_path=model_id_default,
|
132 |
+
dtype=torch_dtype
|
133 |
+
).to(device)
|
134 |
+
|
135 |
+
pipe_cache[cache_key] = pipe
|
136 |
+
else:
|
137 |
+
pipe = pipe_cache[cache_key]
|
138 |
+
|
139 |
+
# Динамическое применение масштаба LoRA
|
140 |
+
if model_repo_id == model_id_default:
|
141 |
+
# Убираем fuse_lora()
|
142 |
+
# pipe.fuse_lora(lora_scale=lora_scale) # Закомментировали проблемную строку
|
143 |
+
|
144 |
+
# Вместо этого устанавливаем адаптеры динамически
|
145 |
+
pipe.unet.set_adapters(
|
146 |
+
[model_lora_id],
|
147 |
+
adapter_weights=[lora_scale]
|
148 |
+
)
|
149 |
+
if hasattr(pipe, 'text_encoder') and pipe.text_encoder is not None:
|
150 |
+
pipe.text_encoder.set_adapters(
|
151 |
+
[model_lora_id],
|
152 |
+
adapter_weights=[lora_scale]
|
153 |
+
)
|
154 |
+
|
155 |
+
print(f"Active adapters - UNet: {pipe.unet.active_adapters}, Text Encoder: {pipe.text_encoder.active_adapters if hasattr(pipe, 'text_encoder') else None}")
|
156 |
+
print("UNet first layer weights:", pipe.unet.base_model.model[0].weight.data[0,0,:5])
|
157 |
+
print(f"LoRA scale applied: {lora_scale}")
|
158 |
+
|
159 |
+
|
160 |
+
# на вызов pipe с эмбеддингами
|
161 |
+
params = {
|
162 |
+
'prompt_embeds': prompt_embeds,
|
163 |
+
'negative_prompt_embeds': negative_prompt_embeds,
|
164 |
+
'guidance_scale': guidance_scale,
|
165 |
+
'num_inference_steps': num_inference_steps,
|
166 |
+
'width': width,
|
167 |
+
'height': height,
|
168 |
+
'generator': generator,
|
169 |
+
}
|
170 |
+
|
171 |
+
return pipe(**params).images[0], seed
|
172 |
+
|
173 |
+
# return image, seed
|
174 |
+
|
175 |
+
|
176 |
+
examples = [
|
177 |
+
"Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
|
178 |
+
"A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
|
179 |
+
"A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
|
180 |
+
"A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
|
181 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
182 |
+
"An astronaut riding a green horse",
|
183 |
+
"A delicious ceviche cheesecake slice",
|
184 |
+
]
|
185 |
+
|
186 |
+
css = """
|
187 |
+
#col-container {
|
188 |
+
margin: 0 auto;
|
189 |
+
max-width: 640px;
|
190 |
+
}
|
191 |
+
"""
|
192 |
+
|
193 |
+
with gr.Blocks(css=css) as demo:
|
194 |
+
with gr.Column(elem_id="col-container"):
|
195 |
+
gr.Markdown(" # Text-to-Image SemaSci Template")
|
196 |
+
|
197 |
+
with gr.Row():
|
198 |
+
prompt = gr.Text(
|
199 |
+
label="Prompt",
|
200 |
+
show_label=False,
|
201 |
+
max_lines=1,
|
202 |
+
placeholder="Enter your prompt",
|
203 |
+
container=False,
|
204 |
+
)
|
205 |
+
|
206 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
207 |
+
|
208 |
+
result = gr.Image(label="Result", show_label=False)
|
209 |
+
|
210 |
+
with gr.Accordion("Advanced Settings", open=False):
|
211 |
+
# model_repo_id = gr.Text(
|
212 |
+
# label="Model Id",
|
213 |
+
# max_lines=1,
|
214 |
+
# placeholder="Choose model",
|
215 |
+
# visible=True,
|
216 |
+
# value=model_repo_id,
|
217 |
+
# )
|
218 |
+
model_repo_id = gr.Dropdown(
|
219 |
+
label="Model Id",
|
220 |
+
choices=model_dropdown,
|
221 |
+
info="Choose model",
|
222 |
+
visible=True,
|
223 |
+
allow_custom_value=True,
|
224 |
+
# value=model_repo_id,
|
225 |
+
value=model_id_default,
|
226 |
+
)
|
227 |
+
|
228 |
+
negative_prompt = gr.Text(
|
229 |
+
label="Negative prompt",
|
230 |
+
max_lines=1,
|
231 |
+
placeholder="Enter a negative prompt",
|
232 |
+
visible=True,
|
233 |
+
)
|
234 |
+
|
235 |
+
seed = gr.Slider(
|
236 |
+
label="Seed",
|
237 |
+
minimum=0,
|
238 |
+
maximum=MAX_SEED,
|
239 |
+
step=1,
|
240 |
+
value=42,
|
241 |
+
)
|
242 |
+
|
243 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
244 |
+
|
245 |
+
with gr.Row():
|
246 |
+
width = gr.Slider(
|
247 |
+
label="Width",
|
248 |
+
minimum=256,
|
249 |
+
maximum=MAX_IMAGE_SIZE,
|
250 |
+
step=32,
|
251 |
+
value=256, # Replace with defaults that work for your model
|
252 |
+
)
|
253 |
+
|
254 |
+
height = gr.Slider(
|
255 |
+
label="Height",
|
256 |
+
minimum=256,
|
257 |
+
maximum=MAX_IMAGE_SIZE,
|
258 |
+
step=32,
|
259 |
+
value=256, # Replace with defaults that work for your model
|
260 |
+
)
|
261 |
+
|
262 |
+
with gr.Row():
|
263 |
+
guidance_scale = gr.Slider(
|
264 |
+
label="Guidance scale",
|
265 |
+
minimum=0.0,
|
266 |
+
maximum=10.0,
|
267 |
+
step=0.1,
|
268 |
+
value=7.0, # Replace with defaults that work for your model
|
269 |
+
)
|
270 |
+
|
271 |
+
num_inference_steps = gr.Slider(
|
272 |
+
label="Number of inference steps",
|
273 |
+
minimum=1,
|
274 |
+
maximum=50,
|
275 |
+
step=1,
|
276 |
+
value=20, # Replace with defaults that work for your model
|
277 |
+
)
|
278 |
+
|
279 |
+
with gr.Row():
|
280 |
+
model_lora_id = gr.Dropdown(
|
281 |
+
label="Lora Id",
|
282 |
+
choices=model_lora_dropdown,
|
283 |
+
info="Choose LoRA model",
|
284 |
+
visible=True,
|
285 |
+
allow_custom_value=True,
|
286 |
+
value=model_lora_default,
|
287 |
+
)
|
288 |
+
|
289 |
+
lora_scale = gr.Slider(
|
290 |
+
label="LoRA scale",
|
291 |
+
minimum=0.0,
|
292 |
+
maximum=1.0,
|
293 |
+
step=0.1,
|
294 |
+
value=0.5,
|
295 |
+
)
|
296 |
+
|
297 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
298 |
+
gr.on(
|
299 |
+
triggers=[run_button.click, prompt.submit],
|
300 |
+
fn=infer,
|
301 |
+
inputs=[
|
302 |
+
prompt,
|
303 |
+
negative_prompt,
|
304 |
+
randomize_seed,
|
305 |
+
width,
|
306 |
+
height,
|
307 |
+
model_repo_id,
|
308 |
+
seed,
|
309 |
+
guidance_scale,
|
310 |
+
num_inference_steps,
|
311 |
+
model_lora_id,
|
312 |
+
lora_scale,
|
313 |
+
],
|
314 |
+
outputs=[result, seed],
|
315 |
+
)
|
316 |
+
|
317 |
+
if __name__ == "__main__":
|
318 |
+
demo.launch()
|