Spaces:
Runtime error
Runtime error
asharma567
commited on
Commit
•
d7e7aed
1
Parent(s):
1c7e53a
asda
Browse files- Untitled.ipynb +89 -0
- app.py +17 -4
- ppl_labels.joblib +0 -0
Untitled.ipynb
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "8841693e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import joblib"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"id": "44508d4e",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"explainer = joblib.load('explainer.joblib')"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 5,
|
26 |
+
"id": "1b4565fa",
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"ename": "FileNotFoundError",
|
31 |
+
"evalue": "[Errno 2] No such file or directory: 'ppl_labels.joblib'",
|
32 |
+
"output_type": "error",
|
33 |
+
"traceback": [
|
34 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
35 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
36 |
+
"\u001b[0;32m<ipython-input-5-67089289c8c9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mppl_labels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjoblib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ppl_labels.joblib'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
37 |
+
"\u001b[0;32m~/opt/anaconda3/lib/python3.8/site-packages/joblib/numpy_pickle.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(filename, mmap_mode)\u001b[0m\n\u001b[1;32m 575\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_unpickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 576\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 577\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 578\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_read_fileobject\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmmap_mode\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfobj\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 579\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
38 |
+
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'ppl_labels.joblib'"
|
39 |
+
]
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"source": [
|
43 |
+
"ppl_labels = joblib.load('ppl_labels.joblib')"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 4,
|
49 |
+
"id": "62b796d3",
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [
|
52 |
+
{
|
53 |
+
"data": {
|
54 |
+
"text/plain": [
|
55 |
+
"shap.explainers._tree.Tree"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"execution_count": 4,
|
59 |
+
"metadata": {},
|
60 |
+
"output_type": "execute_result"
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"source": [
|
64 |
+
"type(explainer)"
|
65 |
+
]
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"metadata": {
|
69 |
+
"kernelspec": {
|
70 |
+
"display_name": "Python 3",
|
71 |
+
"language": "python",
|
72 |
+
"name": "python3"
|
73 |
+
},
|
74 |
+
"language_info": {
|
75 |
+
"codemirror_mode": {
|
76 |
+
"name": "ipython",
|
77 |
+
"version": 3
|
78 |
+
},
|
79 |
+
"file_extension": ".py",
|
80 |
+
"mimetype": "text/x-python",
|
81 |
+
"name": "python",
|
82 |
+
"nbconvert_exporter": "python",
|
83 |
+
"pygments_lexer": "ipython3",
|
84 |
+
"version": "3.8.8"
|
85 |
+
}
|
86 |
+
},
|
87 |
+
"nbformat": 4,
|
88 |
+
"nbformat_minor": 5
|
89 |
+
}
|
app.py
CHANGED
@@ -9,6 +9,7 @@ import streamlit as st
|
|
9 |
import streamlit.components.v1 as components
|
10 |
import pickle
|
11 |
import xgboost
|
|
|
12 |
|
13 |
|
14 |
|
@@ -56,10 +57,24 @@ st.title("Boba Leaderboard")
|
|
56 |
|
57 |
#load joblib
|
58 |
df_M_character = pickle.load(open('df_M_character.pickle', 'rb'))
|
59 |
-
explainer = pickle.load(open('explainer.pickle', 'rb'))
|
60 |
-
shap_values = pickle.load(open('shap_values.pickle', 'rb'))
|
61 |
df_M_character_scale = scale_and_standardize(df_M_character)
|
62 |
author_idx_lookup = dict([(name, idx) for idx, name in enumerate(df_M_character.index)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
X = pd.DataFrame(
|
65 |
df_M_character_scale,
|
@@ -71,8 +86,6 @@ df_leaderboard.rename(columns = {'Unnamed: 0':'Rank', 'author':'member'}, inplac
|
|
71 |
selection = aggrid_interactive_table(df=df_leaderboard)
|
72 |
|
73 |
|
74 |
-
|
75 |
-
|
76 |
if selection:
|
77 |
try:
|
78 |
auth = selection["selected_rows"][0]['member']
|
|
|
9 |
import streamlit.components.v1 as components
|
10 |
import pickle
|
11 |
import xgboost
|
12 |
+
import joblib
|
13 |
|
14 |
|
15 |
|
|
|
57 |
|
58 |
#load joblib
|
59 |
df_M_character = pickle.load(open('df_M_character.pickle', 'rb'))
|
60 |
+
# explainer = pickle.load(open('explainer.pickle', 'rb'))
|
61 |
+
# shap_values = pickle.load(open('shap_values.pickle', 'rb'))
|
62 |
df_M_character_scale = scale_and_standardize(df_M_character)
|
63 |
author_idx_lookup = dict([(name, idx) for idx, name in enumerate(df_M_character.index)])
|
64 |
+
ppl_labels = joblib.load('ppl_labels.joblib')
|
65 |
+
# train XGBoost model
|
66 |
+
X, y = pd.DataFrame(
|
67 |
+
df_M_character_scale,
|
68 |
+
columns=df_M_character.columns
|
69 |
+
), ppl_labels
|
70 |
+
|
71 |
+
bst = xgboost.train({"learning_rate": 0.01}, xgboost.DMatrix(X, label=y), 100)
|
72 |
+
|
73 |
+
# explain the model's predictions using SHAP values
|
74 |
+
explainer = shap.TreeExplainer(bst)
|
75 |
+
shap_values = explainer.shap_values(X)
|
76 |
+
# shap.summary_plot(shap_values, X)
|
77 |
+
|
78 |
|
79 |
X = pd.DataFrame(
|
80 |
df_M_character_scale,
|
|
|
86 |
selection = aggrid_interactive_table(df=df_leaderboard)
|
87 |
|
88 |
|
|
|
|
|
89 |
if selection:
|
90 |
try:
|
91 |
auth = selection["selected_rows"][0]['member']
|
ppl_labels.joblib
ADDED
Binary file (9.46 kB). View file
|
|