Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,129 +2,109 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
import joblib
|
5 |
-
import xgboost
|
|
|
|
|
6 |
|
7 |
# --- Model Loading ---
|
8 |
try:
|
9 |
model = joblib.load('xgb_model.joblib')
|
10 |
print("Model loaded successfully.")
|
11 |
except FileNotFoundError:
|
12 |
-
print("ERROR: Model file 'xgb_model.joblib' not found.
|
13 |
model = None
|
14 |
except Exception as e:
|
15 |
print(f"Error loading model: {e}")
|
16 |
model = None
|
17 |
|
18 |
-
# --- Helper Function for FDR ---
|
|
|
19 |
def get_next_fdr(team_id, fixtures_df):
|
20 |
"""
|
21 |
Finds the next fixture difficulty rating (FDR) for a given team.
|
22 |
"""
|
23 |
-
# Filter for upcoming fixtures for the given team
|
24 |
upcoming = fixtures_df[
|
25 |
((fixtures_df["team_h"] == team_id) | (fixtures_df["team_a"] == team_id)) &
|
26 |
(fixtures_df["finished"] == False)
|
27 |
]
|
28 |
-
|
29 |
if not upcoming.empty:
|
30 |
-
# Drop rows where 'event' (gameweek) is NaN before sorting
|
31 |
upcoming = upcoming.dropna(subset=['event'])
|
32 |
-
if upcoming.empty:
|
33 |
return None
|
34 |
-
|
35 |
-
# Sort by event (gameweek) to find the very next one
|
36 |
next_fixture = upcoming.sort_values("event").iloc[0]
|
37 |
-
|
38 |
-
# Determine if the team is home or away for the next fixture and return corresponding FDR
|
39 |
if next_fixture["team_h"] == team_id:
|
40 |
return next_fixture["team_h_difficulty"]
|
41 |
else:
|
42 |
return next_fixture["team_a_difficulty"]
|
43 |
else:
|
44 |
-
return None
|
45 |
|
46 |
-
# --- Main Prediction Function ---
|
|
|
47 |
def predict_fpl_points(search_name=""):
|
48 |
"""
|
49 |
Fetches FPL player data, calculates their next FDR,
|
50 |
and predicts their FPL points for the next gameweek.
|
51 |
"""
|
52 |
if model is None:
|
53 |
-
# This error will be displayed in the Gradio UI if model loading failed
|
54 |
return pd.DataFrame({"Error": ["Model could not be loaded. Please check server logs."]})
|
55 |
|
56 |
print(f"Fetching latest FPL data... Search term: '{search_name}'")
|
57 |
try:
|
58 |
-
# Fetching general player data
|
59 |
players_url = "https://fantasy.premierleague.com/api/bootstrap-static/"
|
60 |
response = requests.get(players_url, timeout=20)
|
61 |
-
response.raise_for_status()
|
62 |
players_data = response.json()
|
63 |
|
64 |
players = pd.DataFrame(players_data["elements"])[
|
65 |
["id", "web_name", "team", "form", "element_type"]
|
66 |
]
|
67 |
-
# Ensure element_type is numeric for isin check, if it's not already
|
68 |
players["element_type"] = pd.to_numeric(players["element_type"], errors='coerce')
|
69 |
-
players = players[players["element_type"].isin([1, 2, 3, 4])]
|
70 |
-
players["team"] = players["team"].astype(int)
|
71 |
|
72 |
-
# Fetching fixtures data
|
73 |
fixtures_url = "https://fantasy.premierleague.com/api/fixtures/"
|
74 |
fixtures_response = requests.get(fixtures_url, timeout=20)
|
75 |
fixtures_response.raise_for_status()
|
76 |
fixtures_data = fixtures_response.json()
|
77 |
fixtures = pd.DataFrame(fixtures_data)
|
78 |
|
79 |
-
# Ensure relevant fixture columns are numeric, coercing errors to NaN
|
80 |
cols_to_numeric = ["team_h", "team_a", "team_h_difficulty", "team_a_difficulty", "event"]
|
81 |
for col in cols_to_numeric:
|
82 |
if col in fixtures.columns:
|
83 |
fixtures[col] = pd.to_numeric(fixtures[col], errors='coerce')
|
84 |
-
else:
|
85 |
-
# Handle missing essential columns if necessary, though FPL API is usually consistent
|
86 |
-
print(f"Warning: Fixture column '{col}' not found in API response.")
|
87 |
-
# Depending on severity, you might return an error DataFrame here
|
88 |
|
89 |
print("FPL data fetched successfully.")
|
90 |
|
91 |
except requests.exceptions.RequestException as e:
|
92 |
print(f"Error fetching data from FPL API: {e}")
|
93 |
return pd.DataFrame({"Error": [f"Failed to fetch FPL data: {e}. Please try again later."]})
|
94 |
-
except Exception as e:
|
95 |
print(f"An unexpected error occurred during data fetching: {e}")
|
96 |
return pd.DataFrame({"Error": [f"An unexpected error occurred during data fetching: {e}"]})
|
97 |
|
98 |
print("Calculating next FDR and preparing data for prediction...")
|
99 |
try:
|
100 |
players_with_fdr = players.copy()
|
101 |
-
# Apply the get_next_fdr function to each player
|
102 |
players_with_fdr["next_fdr"] = players_with_fdr["team"].apply(
|
103 |
lambda team_id: get_next_fdr(team_id, fixtures)
|
104 |
)
|
105 |
|
106 |
-
# Clean data: drop players with missing FDR or form, ensure types are correct
|
107 |
players_clean = players_with_fdr.dropna(subset=["next_fdr", "form"])
|
108 |
players_clean["form"] = pd.to_numeric(players_clean["form"], errors='coerce')
|
109 |
players_clean["next_fdr"] = pd.to_numeric(players_clean["next_fdr"], errors='coerce')
|
110 |
-
# Drop rows where form or next_fdr could not be converted to numeric
|
111 |
players_clean = players_clean.dropna(subset=["form", "next_fdr"])
|
112 |
|
113 |
if players_clean.empty:
|
114 |
print("No players found after cleaning (missing form or next FDR).")
|
115 |
-
|
116 |
-
return pd.DataFrame({"Message": ["No eligible players found after data cleaning (missing form or next FDR)."]})
|
117 |
|
118 |
print(f"Predicting points for {len(players_clean)} players...")
|
119 |
-
# Define features used by the model
|
120 |
features = ["form", "next_fdr"]
|
121 |
X_next = players_clean[features]
|
122 |
-
|
123 |
-
# Make predictions
|
124 |
players_clean.loc[:, "predicted_points"] = model.predict(X_next)
|
125 |
print("Prediction complete.")
|
126 |
|
127 |
-
# Prepare output DataFrame
|
128 |
output_df_base = players_clean[["web_name", "predicted_points", "form", "next_fdr"]].copy()
|
129 |
output_df_base.rename(columns={
|
130 |
"web_name": "Player",
|
@@ -132,79 +112,154 @@ def predict_fpl_points(search_name=""):
|
|
132 |
"form": "Form",
|
133 |
"next_fdr": "Next FDR (Lower is easier)"
|
134 |
}, inplace=True)
|
135 |
-
# Round predicted points for better readability
|
136 |
output_df_base.loc[:, "Predicted Points"] = output_df_base["Predicted Points"].round(2)
|
137 |
|
138 |
-
# Handle search functionality
|
139 |
if search_name and search_name.strip():
|
140 |
print(f"Filtering for player name containing: '{search_name}'")
|
141 |
-
# Case-insensitive search
|
142 |
search_results = output_df_base[
|
143 |
output_df_base['Player'].str.contains(search_name.strip(), case=False, na=False)
|
144 |
]
|
145 |
-
|
146 |
if not search_results.empty:
|
147 |
-
|
148 |
-
return search_results
|
149 |
else:
|
150 |
-
|
151 |
-
return pd.DataFrame({"Message": [f"No player found matching '{search_name}'. Try a different name or leave blank for top players."]})
|
152 |
else:
|
153 |
-
# No search term, return top N players
|
154 |
print("No search term provided, returning top 20 predicted players.")
|
155 |
-
|
156 |
-
return top_players
|
157 |
|
158 |
except KeyError as e:
|
159 |
-
print(f"KeyError during data processing: {e}.
|
160 |
import traceback
|
161 |
traceback.print_exc()
|
162 |
-
return pd.DataFrame({"Error": [f"Data processing error (Missing Key): {e}.
|
163 |
except Exception as e:
|
164 |
print(f"An error occurred during prediction/processing: {e}")
|
165 |
import traceback
|
166 |
traceback.print_exc()
|
167 |
return pd.DataFrame({"Error": [f"Prediction or data processing failed: {e}"]})
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
label="Predicted Player Data (Next Gameweek)",
|
179 |
wrap=True,
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
# --- Application Launch ---
|
192 |
if __name__ == "__main__":
|
193 |
-
print("
|
194 |
-
|
195 |
-
#
|
196 |
-
#
|
197 |
-
#
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
try:
|
200 |
-
|
|
|
201 |
except TypeError as e:
|
202 |
-
if 'mcp_server' in str(e):
|
203 |
-
print("\nERROR: Failed to launch with mcp_server
|
204 |
-
print("
|
205 |
-
print("
|
206 |
-
|
207 |
-
print("
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
else:
|
210 |
-
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
import joblib
|
5 |
+
import xgboost
|
6 |
+
|
7 |
+
print(f"Gradio version at script start: {gr.__version__}") # For debugging
|
8 |
|
9 |
# --- Model Loading ---
|
10 |
try:
|
11 |
model = joblib.load('xgb_model.joblib')
|
12 |
print("Model loaded successfully.")
|
13 |
except FileNotFoundError:
|
14 |
+
print("ERROR: Model file 'xgb_model.joblib' not found. Predictions will fail.")
|
15 |
model = None
|
16 |
except Exception as e:
|
17 |
print(f"Error loading model: {e}")
|
18 |
model = None
|
19 |
|
20 |
+
# --- Helper Function for FDR (get_next_fdr) ---
|
21 |
+
# (Your get_next_fdr function code remains the same here)
|
22 |
def get_next_fdr(team_id, fixtures_df):
|
23 |
"""
|
24 |
Finds the next fixture difficulty rating (FDR) for a given team.
|
25 |
"""
|
|
|
26 |
upcoming = fixtures_df[
|
27 |
((fixtures_df["team_h"] == team_id) | (fixtures_df["team_a"] == team_id)) &
|
28 |
(fixtures_df["finished"] == False)
|
29 |
]
|
|
|
30 |
if not upcoming.empty:
|
|
|
31 |
upcoming = upcoming.dropna(subset=['event'])
|
32 |
+
if upcoming.empty:
|
33 |
return None
|
|
|
|
|
34 |
next_fixture = upcoming.sort_values("event").iloc[0]
|
|
|
|
|
35 |
if next_fixture["team_h"] == team_id:
|
36 |
return next_fixture["team_h_difficulty"]
|
37 |
else:
|
38 |
return next_fixture["team_a_difficulty"]
|
39 |
else:
|
40 |
+
return None
|
41 |
|
42 |
+
# --- Main Prediction Function (predict_fpl_points) ---
|
43 |
+
# (Your predict_fpl_points function code remains the same here)
|
44 |
def predict_fpl_points(search_name=""):
|
45 |
"""
|
46 |
Fetches FPL player data, calculates their next FDR,
|
47 |
and predicts their FPL points for the next gameweek.
|
48 |
"""
|
49 |
if model is None:
|
|
|
50 |
return pd.DataFrame({"Error": ["Model could not be loaded. Please check server logs."]})
|
51 |
|
52 |
print(f"Fetching latest FPL data... Search term: '{search_name}'")
|
53 |
try:
|
|
|
54 |
players_url = "https://fantasy.premierleague.com/api/bootstrap-static/"
|
55 |
response = requests.get(players_url, timeout=20)
|
56 |
+
response.raise_for_status()
|
57 |
players_data = response.json()
|
58 |
|
59 |
players = pd.DataFrame(players_data["elements"])[
|
60 |
["id", "web_name", "team", "form", "element_type"]
|
61 |
]
|
|
|
62 |
players["element_type"] = pd.to_numeric(players["element_type"], errors='coerce')
|
63 |
+
players = players[players["element_type"].isin([1, 2, 3, 4])]
|
64 |
+
players["team"] = players["team"].astype(int)
|
65 |
|
|
|
66 |
fixtures_url = "https://fantasy.premierleague.com/api/fixtures/"
|
67 |
fixtures_response = requests.get(fixtures_url, timeout=20)
|
68 |
fixtures_response.raise_for_status()
|
69 |
fixtures_data = fixtures_response.json()
|
70 |
fixtures = pd.DataFrame(fixtures_data)
|
71 |
|
|
|
72 |
cols_to_numeric = ["team_h", "team_a", "team_h_difficulty", "team_a_difficulty", "event"]
|
73 |
for col in cols_to_numeric:
|
74 |
if col in fixtures.columns:
|
75 |
fixtures[col] = pd.to_numeric(fixtures[col], errors='coerce')
|
|
|
|
|
|
|
|
|
76 |
|
77 |
print("FPL data fetched successfully.")
|
78 |
|
79 |
except requests.exceptions.RequestException as e:
|
80 |
print(f"Error fetching data from FPL API: {e}")
|
81 |
return pd.DataFrame({"Error": [f"Failed to fetch FPL data: {e}. Please try again later."]})
|
82 |
+
except Exception as e:
|
83 |
print(f"An unexpected error occurred during data fetching: {e}")
|
84 |
return pd.DataFrame({"Error": [f"An unexpected error occurred during data fetching: {e}"]})
|
85 |
|
86 |
print("Calculating next FDR and preparing data for prediction...")
|
87 |
try:
|
88 |
players_with_fdr = players.copy()
|
|
|
89 |
players_with_fdr["next_fdr"] = players_with_fdr["team"].apply(
|
90 |
lambda team_id: get_next_fdr(team_id, fixtures)
|
91 |
)
|
92 |
|
|
|
93 |
players_clean = players_with_fdr.dropna(subset=["next_fdr", "form"])
|
94 |
players_clean["form"] = pd.to_numeric(players_clean["form"], errors='coerce')
|
95 |
players_clean["next_fdr"] = pd.to_numeric(players_clean["next_fdr"], errors='coerce')
|
|
|
96 |
players_clean = players_clean.dropna(subset=["form", "next_fdr"])
|
97 |
|
98 |
if players_clean.empty:
|
99 |
print("No players found after cleaning (missing form or next FDR).")
|
100 |
+
return pd.DataFrame({"Message": ["No eligible players found after data cleaning."]})
|
|
|
101 |
|
102 |
print(f"Predicting points for {len(players_clean)} players...")
|
|
|
103 |
features = ["form", "next_fdr"]
|
104 |
X_next = players_clean[features]
|
|
|
|
|
105 |
players_clean.loc[:, "predicted_points"] = model.predict(X_next)
|
106 |
print("Prediction complete.")
|
107 |
|
|
|
108 |
output_df_base = players_clean[["web_name", "predicted_points", "form", "next_fdr"]].copy()
|
109 |
output_df_base.rename(columns={
|
110 |
"web_name": "Player",
|
|
|
112 |
"form": "Form",
|
113 |
"next_fdr": "Next FDR (Lower is easier)"
|
114 |
}, inplace=True)
|
|
|
115 |
output_df_base.loc[:, "Predicted Points"] = output_df_base["Predicted Points"].round(2)
|
116 |
|
|
|
117 |
if search_name and search_name.strip():
|
118 |
print(f"Filtering for player name containing: '{search_name}'")
|
|
|
119 |
search_results = output_df_base[
|
120 |
output_df_base['Player'].str.contains(search_name.strip(), case=False, na=False)
|
121 |
]
|
|
|
122 |
if not search_results.empty:
|
123 |
+
return search_results.sort_values("Predicted Points", ascending=False)
|
|
|
124 |
else:
|
125 |
+
return pd.DataFrame({"Message": [f"No player found matching '{search_name}'."]})
|
|
|
126 |
else:
|
|
|
127 |
print("No search term provided, returning top 20 predicted players.")
|
128 |
+
return output_df_base.sort_values("Predicted Points", ascending=False).head(20)
|
|
|
129 |
|
130 |
except KeyError as e:
|
131 |
+
print(f"KeyError during data processing: {e}.")
|
132 |
import traceback
|
133 |
traceback.print_exc()
|
134 |
+
return pd.DataFrame({"Error": [f"Data processing error (Missing Key): {e}."]})
|
135 |
except Exception as e:
|
136 |
print(f"An error occurred during prediction/processing: {e}")
|
137 |
import traceback
|
138 |
traceback.print_exc()
|
139 |
return pd.DataFrame({"Error": [f"Prediction or data processing failed: {e}"]})
|
140 |
|
141 |
+
|
142 |
+
# --- Gradio UI Definition using gr.Blocks ---
|
143 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Fantasy Premier League Player Point Predictor") as demo:
|
144 |
+
gr.Markdown(
|
145 |
+
"""
|
146 |
+
# Fantasy Premier League Player Point Predictor
|
147 |
+
Predicts FPL points for the *next* gameweek based on current form and upcoming fixture difficulty (FDR).
|
148 |
+
Enter a player name to search, or leave blank to see the top 20 predicted players. Fetches live data.
|
149 |
+
"""
|
150 |
+
) # You can add "(MCP Enabled)" to the title/markdown if MCP features load successfully
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
player_search_input = gr.Textbox(
|
154 |
+
label="Search for Player (Optional)",
|
155 |
+
placeholder="E.g., Salah, Haaland, Saka... Leave blank for Top 20",
|
156 |
+
# Add mcp_label if MCP features are correctly installed and working
|
157 |
+
# mcp_label="player_search_input_blocks"
|
158 |
+
)
|
159 |
+
|
160 |
+
predict_button = gr.Button("Predict Points")
|
161 |
+
|
162 |
+
prediction_output_dataframe = gr.DataFrame(
|
163 |
label="Predicted Player Data (Next Gameweek)",
|
164 |
wrap=True,
|
165 |
+
# Add mcp_label if MCP features are correctly installed and working
|
166 |
+
# mcp_label="prediction_output_dataframe_blocks"
|
167 |
+
)
|
168 |
+
|
169 |
+
gr.Examples(
|
170 |
+
examples=[[""], ["Son"], ["Watkins"], ["Palmer"]],
|
171 |
+
inputs=player_search_input,
|
172 |
+
# You could also have outputs and fn here if examples should pre-run,
|
173 |
+
# but for dynamic input, just setting input is common.
|
174 |
+
)
|
175 |
+
|
176 |
+
# Define the action for the button click
|
177 |
+
predict_button.click(
|
178 |
+
fn=predict_fpl_points,
|
179 |
+
inputs=player_search_input,
|
180 |
+
outputs=prediction_output_dataframe
|
181 |
+
)
|
182 |
|
183 |
# --- Application Launch ---
|
184 |
if __name__ == "__main__":
|
185 |
+
print(f"Gradio version before launch: {gr.__version__}")
|
186 |
+
|
187 |
+
# Attempt to add MCP labels dynamically if the Gradio version seems to support it
|
188 |
+
# This is a bit of a workaround due to the persistent environment issues.
|
189 |
+
# Ideally, you'd just define them directly if the env was correct.
|
190 |
+
mcp_is_likely_available = False
|
191 |
+
try:
|
192 |
+
# A simple test: does Textbox accept mcp_label?
|
193 |
+
# This is a rough check and might not be perfectly reliable for all Gradio versions/setups.
|
194 |
+
# The real check is whether 'gradio[mcp]' was correctly installed.
|
195 |
+
_ = gr.Textbox(mcp_label="test")
|
196 |
+
mcp_is_likely_available = True
|
197 |
+
print("MCP features (like mcp_label) seem available in this Gradio version.")
|
198 |
+
except TypeError:
|
199 |
+
print("WARNING: MCP features (like mcp_label) are NOT available in this Gradio version. MCP server might fail or not collect specific data.")
|
200 |
+
print(f"This is likely due to an issue with 'gradio[mcp]' installation or an incompatible Gradio version ({gr.__version__}) in the environment.")
|
201 |
+
|
202 |
+
if mcp_is_likely_available:
|
203 |
+
# If MCP seems available, re-define components within Blocks with mcp_label
|
204 |
+
# This is done by re-creating the demo object if we want to add them now.
|
205 |
+
# For simplicity in this example, I'll just note that you would have defined them above directly.
|
206 |
+
# The `mcp_label`s in the Blocks definition above are commented out;
|
207 |
+
# you'd uncomment them if your environment was fixed.
|
208 |
+
# For now, we'll proceed, and launch will attempt mcp_server=True
|
209 |
+
print("Proceeding with mcp_server=True. If it fails, it confirms environment issues.")
|
210 |
+
if hasattr(player_search_input, 'mcp_label'): # This check is illustrative
|
211 |
+
player_search_input.mcp_label = "player_search_input_blocks"
|
212 |
+
prediction_output_dataframe.mcp_label = "prediction_output_dataframe_blocks"
|
213 |
+
demo.title = "Fantasy Premier League Player Point Predictor (MCP Enabled)"
|
214 |
+
demo.blocks[0].value = demo.blocks[0].value.replace("Player Point Predictor", "Player Point Predictor (MCP Enabled)")
|
215 |
+
|
216 |
+
|
217 |
+
print("Attempting to launch Gradio app...")
|
218 |
try:
|
219 |
+
# Try to launch with mcp_server=True
|
220 |
+
demo.launch(mcp_server=True)
|
221 |
except TypeError as e:
|
222 |
+
if 'mcp_server' in str(e) or 'mcp_label' in str(e):
|
223 |
+
print("\nERROR: Failed to launch with MCP features (mcp_server or mcp_label not recognized).")
|
224 |
+
print(f"Gradio version being used: {gr.__version__}")
|
225 |
+
print("This confirms that 'gradio[mcp]' extras are not correctly installed or it's an incompatible Gradio version.")
|
226 |
+
print("If you are on Hugging Face Spaces, ensure your environment (requirements.txt, Dockerfile if used, or SDK settings) correctly installs a recent 'gradio[mcp]'.\n")
|
227 |
+
print(f"Error details: {e}")
|
228 |
+
|
229 |
+
print("Attempting to launch Gradio app WITHOUT MCP server as a fallback...")
|
230 |
+
# Fallback launch:
|
231 |
+
# Create a new Blocks instance without attempting MCP features if the first one is problematic
|
232 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Fantasy Premier League Player Point Predictor (MCP Fallback)") as fallback_demo:
|
233 |
+
gr.Markdown(
|
234 |
+
"""
|
235 |
+
# Fantasy Premier League Player Point Predictor (MCP Features Failed to Load)
|
236 |
+
Predicts FPL points for the *next* gameweek based on current form and upcoming fixture difficulty (FDR).
|
237 |
+
Enter a player name to search, or leave blank to see the top 20 predicted players. Fetches live data.
|
238 |
+
"""
|
239 |
+
)
|
240 |
+
with gr.Row():
|
241 |
+
player_search_input_fb = gr.Textbox( # no mcp_label
|
242 |
+
label="Search for Player (Optional)",
|
243 |
+
placeholder="E.g., Salah, Haaland, Saka... Leave blank for Top 20"
|
244 |
+
)
|
245 |
+
predict_button_fb = gr.Button("Predict Points")
|
246 |
+
prediction_output_dataframe_fb = gr.DataFrame( # no mcp_label
|
247 |
+
label="Predicted Player Data (Next Gameweek)",
|
248 |
+
wrap=True
|
249 |
+
)
|
250 |
+
gr.Examples(
|
251 |
+
examples=[[""], ["Son"], ["Watkins"], ["Palmer"]],
|
252 |
+
inputs=player_search_input_fb,
|
253 |
+
)
|
254 |
+
predict_button_fb.click(
|
255 |
+
fn=predict_fpl_points,
|
256 |
+
inputs=player_search_input_fb,
|
257 |
+
outputs=prediction_output_dataframe_fb
|
258 |
+
)
|
259 |
+
fallback_demo.launch()
|
260 |
else:
|
261 |
+
# Re-raise other TypeErrors not related to MCP
|
262 |
+
raise e
|
263 |
+
except Exception as general_e:
|
264 |
+
print(f"A general error occurred during launch: {general_e}")
|
265 |
+
# Potentially try the fallback launch here too if it's a critical launch failure
|