SeemG commited on
Commit
f976b29
·
verified ·
1 Parent(s): 2572f93

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +84 -322
model.py CHANGED
@@ -47,78 +47,78 @@ n = int(0.9*len(data)) # first 90% will be train, rest val
47
  train_data = data[:n]
48
  val_data = data[n:]
49
 
50
- # data loading
51
- def get_batch(split):
52
- # generate a small batch of data of inputs x and targets y
53
- data = train_data if split == 'train' else val_data
54
- ix = torch.randint(len(data) - block_size, (batch_size,))
55
- x = torch.stack([data[i:i+block_size] for i in ix])
56
- y = torch.stack([data[i+1:i+block_size+1] for i in ix])
57
- x, y = x.to(device), y.to(device)
58
- return x, y
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
- class LayerNorm(nn.Module):
62
- """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
63
-
64
- def __init__(self, ndim, bias):
65
- super().__init__()
66
- self.weight = nn.Parameter(torch.ones(ndim))
67
- self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
68
-
69
- def forward(self, input):
70
- return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
71
-
72
- class CausalSelfAttention(nn.Module):
73
-
74
- def __init__(self, config):
75
- super().__init__()
76
- assert config.n_embd % config.n_head == 0
77
- # key, query, value projections for all heads, but in a batch
78
- self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
79
- # output projection
80
- self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
81
- # regularization
82
- self.attn_dropout = nn.Dropout(config.dropout)
83
- self.resid_dropout = nn.Dropout(config.dropout)
84
- self.n_head = config.n_head
85
- self.n_embd = config.n_embd
86
- self.dropout = config.dropout
87
- # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
88
- self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
89
- if not self.flash:
90
- print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
91
- # causal mask to ensure that attention is only applied to the left in the input sequence
92
- self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
93
- .view(1, 1, config.block_size, config.block_size))
94
-
95
- def forward(self, x):
96
- B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
97
-
98
- # calculate query, key, values for all heads in batch and move head forward to be the batch dim
99
- q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
100
- k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
101
- q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
102
- v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
103
-
104
- # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
105
- if self.flash:
106
- # efficient attention using Flash Attention CUDA kernels
107
- y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
108
- else:
109
- # manual implementation of attention
110
- att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
111
- att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
112
- att = F.softmax(att, dim=-1)
113
- att = self.attn_dropout(att)
114
- y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
115
- y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
116
 
117
- # output projection
118
- y = self.resid_dropout(self.c_proj(y))
119
- return y
120
 
121
- # super simple bigram model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  class BigramLanguageModel(nn.Module):
123
 
124
  def __init__(self):
@@ -151,257 +151,19 @@ class BigramLanguageModel(nn.Module):
151
 
152
  return logits, loss
153
 
154
-
155
- class MLP(nn.Module):
156
-
157
- def __init__(self, config):
158
- super().__init__()
159
- self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
160
- self.gelu = nn.GELU()
161
- self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
162
- self.dropout = nn.Dropout(config.dropout)
163
-
164
- def forward(self, x):
165
- x = self.c_fc(x)
166
- x = self.gelu(x)
167
- x = self.c_proj(x)
168
- x = self.dropout(x)
169
- return x
170
-
171
- class Block(nn.Module):
172
-
173
- def __init__(self, config):
174
- super().__init__()
175
- self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
176
- self.attn = CausalSelfAttention(config)
177
- self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
178
- self.mlp = MLP(config)
179
-
180
- def forward(self, x):
181
- x = x + self.attn(self.ln_1(x))
182
- x = x + self.mlp(self.ln_2(x))
183
- return x
184
-
185
- @dataclass
186
- class GPTConfig:
187
- block_size: int = 1024
188
- vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
189
- n_layer: int = 12
190
- n_head: int = 12
191
- n_embd: int = 768
192
- dropout: float = 0.0
193
- bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
194
-
195
- class GPT(nn.Module):
196
-
197
- def __init__(self, config):
198
- super().__init__()
199
- assert config.vocab_size is not None
200
- assert config.block_size is not None
201
- self.config = config
202
-
203
- self.transformer = nn.ModuleDict(dict(
204
- wte = nn.Embedding(config.vocab_size, config.n_embd),
205
- wpe = nn.Embedding(config.block_size, config.n_embd),
206
- drop = nn.Dropout(config.dropout),
207
- h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
208
- ln_f = LayerNorm(config.n_embd, bias=config.bias),
209
- ))
210
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
211
- # with weight tying when using torch.compile() some warnings get generated:
212
- # "UserWarning: functional_call was passed multiple values for tied weights.
213
- # This behavior is deprecated and will be an error in future versions"
214
- # not 100% sure what this is, so far seems to be harmless. TODO investigate
215
- self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
216
-
217
- # init all weights
218
- self.apply(self._init_weights)
219
- # apply special scaled init to the residual projections, per GPT-2 paper
220
- for pn, p in self.named_parameters():
221
- if pn.endswith('c_proj.weight'):
222
- torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
223
-
224
- # report number of parameters
225
- print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
226
-
227
- def get_num_params(self, non_embedding=True):
228
- """
229
- Return the number of parameters in the model.
230
- For non-embedding count (default), the position embeddings get subtracted.
231
- The token embeddings would too, except due to the parameter sharing these
232
- params are actually used as weights in the final layer, so we include them.
233
- """
234
- n_params = sum(p.numel() for p in self.parameters())
235
- if non_embedding:
236
- n_params -= self.transformer.wpe.weight.numel()
237
- return n_params
238
-
239
- def _init_weights(self, module):
240
- if isinstance(module, nn.Linear):
241
- torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
242
- if module.bias is not None:
243
- torch.nn.init.zeros_(module.bias)
244
- elif isinstance(module, nn.Embedding):
245
- torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
246
-
247
- def forward(self, idx, targets=None):
248
- device = idx.device
249
- b, t = idx.size()
250
- assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
251
- pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
252
-
253
- # forward the GPT model itself
254
- tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
255
- pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
256
- x = self.transformer.drop(tok_emb + pos_emb)
257
- for block in self.transformer.h:
258
- x = block(x)
259
- x = self.transformer.ln_f(x)
260
-
261
- if targets is not None:
262
- # if we are given some desired targets also calculate the loss
263
- logits = self.lm_head(x)
264
- loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
265
- else:
266
- # inference-time mini-optimization: only forward the lm_head on the very last position
267
- logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
268
- loss = None
269
-
270
- return logits, loss
271
-
272
- def crop_block_size(self, block_size):
273
- # model surgery to decrease the block size if necessary
274
- # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
275
- # but want to use a smaller block size for some smaller, simpler model
276
- assert block_size <= self.config.block_size
277
- self.config.block_size = block_size
278
- self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
279
- for block in self.transformer.h:
280
- if hasattr(block.attn, 'bias'):
281
- block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
282
-
283
- @classmethod
284
- def from_pretrained(cls, model_type, override_args=None):
285
- assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
286
- override_args = override_args or {} # default to empty dict
287
- # only dropout can be overridden see more notes below
288
- assert all(k == 'dropout' for k in override_args)
289
- from transformers import GPT2LMHeadModel
290
- print("loading weights from pretrained gpt: %s" % model_type)
291
-
292
- # n_layer, n_head and n_embd are determined from model_type
293
- config_args = {
294
- 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
295
- 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
296
- 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
297
- 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
298
- }[model_type]
299
- print("forcing vocab_size=50257, block_size=1024, bias=True")
300
- config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
301
- config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
302
- config_args['bias'] = True # always True for GPT model checkpoints
303
- # we can override the dropout rate, if desired
304
- if 'dropout' in override_args:
305
- print(f"overriding dropout rate to {override_args['dropout']}")
306
- config_args['dropout'] = override_args['dropout']
307
- # create a from-scratch initialized minGPT model
308
- config = GPTConfig(**config_args)
309
- model = GPT(config)
310
- sd = model.state_dict()
311
- sd_keys = sd.keys()
312
- sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
313
-
314
- # init a huggingface/transformers model
315
- model_hf = GPT2LMHeadModel.from_pretrained(model_type)
316
- sd_hf = model_hf.state_dict()
317
-
318
- # copy while ensuring all of the parameters are aligned and match in names and shapes
319
- sd_keys_hf = sd_hf.keys()
320
- sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
321
- sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
322
- transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
323
- # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
324
- # this means that we have to transpose these weights when we import them
325
- assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
326
- for k in sd_keys_hf:
327
- if any(k.endswith(w) for w in transposed):
328
- # special treatment for the Conv1D weights we need to transpose
329
- assert sd_hf[k].shape[::-1] == sd[k].shape
330
- with torch.no_grad():
331
- sd[k].copy_(sd_hf[k].t())
332
- else:
333
- # vanilla copy over the other parameters
334
- assert sd_hf[k].shape == sd[k].shape
335
- with torch.no_grad():
336
- sd[k].copy_(sd_hf[k])
337
-
338
- return model
339
-
340
- def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
341
- # start with all of the candidate parameters
342
- param_dict = {pn: p for pn, p in self.named_parameters()}
343
- # filter out those that do not require grad
344
- param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
345
- # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
346
- # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
347
- decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
348
- nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
349
- optim_groups = [
350
- {'params': decay_params, 'weight_decay': weight_decay},
351
- {'params': nodecay_params, 'weight_decay': 0.0}
352
- ]
353
- num_decay_params = sum(p.numel() for p in decay_params)
354
- num_nodecay_params = sum(p.numel() for p in nodecay_params)
355
- print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
356
- print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
357
- # Create AdamW optimizer and use the fused version if it is available
358
- fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
359
- use_fused = fused_available and device_type == 'cuda'
360
- extra_args = dict(fused=True) if use_fused else dict()
361
- optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
362
- print(f"using fused AdamW: {use_fused}")
363
-
364
- return optimizer
365
-
366
- def estimate_mfu(self, fwdbwd_per_iter, dt):
367
- """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
368
- # first estimate the number of flops we do per iteration.
369
- # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
370
- N = self.get_num_params()
371
- cfg = self.config
372
- L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
373
- flops_per_token = 6*N + 12*L*H*Q*T
374
- flops_per_fwdbwd = flops_per_token * T
375
- flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
376
- # express our flops throughput as ratio of A100 bfloat16 peak flops
377
- flops_achieved = flops_per_iter * (1.0/dt) # per second
378
- flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
379
- mfu = flops_achieved / flops_promised
380
- return mfu
381
-
382
- @torch.no_grad()
383
- def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
384
- """
385
- Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
386
- the sequence max_new_tokens times, feeding the predictions back into the model each time.
387
- Most likely you'll want to make sure to be in model.eval() mode of operation for this.
388
- """
389
- for _ in range(max_new_tokens):
390
- # if the sequence context is growing too long we must crop it at block_size
391
- idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
392
- # forward the model to get the logits for the index in the sequence
393
- logits, _ = self(idx_cond)
394
- # pluck the logits at the final step and scale by desired temperature
395
- logits = logits[:, -1, :] / temperature
396
- # optionally crop the logits to only the top k options
397
- if top_k is not None:
398
- v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
399
- logits[logits < v[:, [-1]]] = -float('Inf')
400
- # apply softmax to convert logits to (normalized) probabilities
401
- probs = F.softmax(logits, dim=-1)
402
- # sample from the distribution
403
- idx_next = torch.multinomial(probs, num_samples=1)
404
- # append sampled index to the running sequence and continue
405
- idx = torch.cat((idx, idx_next), dim=1)
406
-
407
- return idx
 
47
  train_data = data[:n]
48
  val_data = data[n:]
49
 
50
+ class Head(nn.Module):
51
+ """ one head of self-attention """
 
 
 
 
 
 
 
52
 
53
+ def __init__(self, head_size):
54
+ super().__init__()
55
+ self.key = nn.Linear(n_embd, head_size, bias=False)
56
+ self.query = nn.Linear(n_embd, head_size, bias=False)
57
+ self.value = nn.Linear(n_embd, head_size, bias=False)
58
+ self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
59
+
60
+ self.dropout = nn.Dropout(dropout)
61
+
62
+ def forward(self, x):
63
+ B,T,C = x.shape
64
+ k = self.key(x) # (B,T,C)
65
+ q = self.query(x) # (B,T,C)
66
+ # compute attention scores ("affinities")
67
+ wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
68
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
69
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
70
+ wei = self.dropout(wei)
71
+ # perform the weighted aggregation of the values
72
+ v = self.value(x) # (B,T,C)
73
+ out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
74
+ return out
75
+
76
+ class MultiHeadAttention(nn.Module):
77
+ """ multiple heads of self-attention in parallel """
78
+
79
+ def __init__(self, num_heads, head_size):
80
+ super().__init__()
81
+ self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
82
+ self.proj = nn.Linear(n_embd, n_embd)
83
+ self.dropout = nn.Dropout(dropout)
84
+
85
+ def forward(self, x):
86
+ out = torch.cat([h(x) for h in self.heads], dim=-1)
87
+ out = self.dropout(self.proj(out))
88
+ return out
89
+ class FeedFoward(nn.Module):
90
+ """ a simple linear layer followed by a non-linearity """
91
+
92
+ def __init__(self, n_embd):
93
+ super().__init__()
94
+ self.net = nn.Sequential(
95
+ nn.Linear(n_embd, 4 * n_embd),
96
+ nn.ReLU(),
97
+ nn.Linear(4 * n_embd, n_embd),
98
+ nn.Dropout(dropout),
99
+ )
100
 
101
+ def forward(self, x):
102
+ return self.net(x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
+ class Block(nn.Module):
105
+ """ Transformer block: communication followed by computation """
 
106
 
107
+ def __init__(self, n_embd, n_head):
108
+ # n_embd: embedding dimension, n_head: the number of heads we'd like
109
+ super().__init__()
110
+ head_size = n_embd // n_head
111
+ self.sa = MultiHeadAttention(n_head, head_size)
112
+ self.ffwd = FeedFoward(n_embd)
113
+ self.ln1 = nn.LayerNorm(n_embd)
114
+ self.ln2 = nn.LayerNorm(n_embd)
115
+
116
+ def forward(self, x):
117
+ x = x + self.sa(self.ln1(x))
118
+ x = x + self.ffwd(self.ln2(x))
119
+ return x
120
+
121
+ # super simple bigram model
122
  class BigramLanguageModel(nn.Module):
123
 
124
  def __init__(self):
 
151
 
152
  return logits, loss
153
 
154
+ def generate(self, idx, max_new_tokens):
155
+ # idx is (B, T) array of indices in the current context
156
+ for _ in range(max_new_tokens):
157
+ # crop idx to the last block_size tokens
158
+ idx_cond = idx[:, -block_size:]
159
+ # get the predictions
160
+ logits, loss = self(idx_cond)
161
+ # focus only on the last time step
162
+ logits = logits[:, -1, :] # becomes (B, C)
163
+ # apply softmax to get probabilities
164
+ probs = F.softmax(logits, dim=-1) # (B, C)
165
+ # sample from the distribution
166
+ idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
167
+ # append sampled index to the running sequence
168
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
169
+ return idx