wine_quality / app.py
SebastianoMeneghin's picture
Update app.py
9b48ebf
raw
history blame
2.43 kB
import gradio as gr
from PIL import Image
import requests
import hopsworks
import joblib
import pandas as pd
import os
hopsworks_iris_api_key = os.environ["HOPSWORKS_API_LAB1"]
project = hopsworks.login(api_key_value = hopsworks_iris_api_key)
fs = project.get_feature_store()
# Download the pre-trained model and load it
mr = project.get_model_registry()
model = mr.get_model("wine_model_feature_creator", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/wine_model_feature_creator.pkl")
print("Model downloaded")
def iris(type, fixed_acid, volatile_acid, citric_acid, residual_sugar, chlorides, free_sd, total_sd, density, ph, sulphates, alcohol):
print("Calling function")
colour = 0
if fixed_acid == 'white':
colour = 1
else:
colour = 2
df = pd.DataFrame([[colour, fixed_acid, volatile_acid, citric_acid, residual_sugar, chlorides, free_sd, density, ph, sulphates, alcohol]],
columns=['type', 'fixed_acid', 'volatile_acid', 'citric_acid', 'residual_sugar', 'chlorides', 'free_sd', 'density', 'ph', 'sulphates', 'alcohol'])
print("Predicting")
print(df)
# 'res' is a list of predictions returned as the label.
res = model.predict(df)
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
#print("Res: {0}").format(res)
print(res[0])
flower_url = "https://raw.githubusercontent.com/SebastianoMeneghin/fotografie_iris/main/" + str(res[0]) + ".png"
img = Image.open(requests.get(flower_url, stream=True).raw)
print(img)
return img
demo = gr.Interface(
fn=iris,
title="Test Wine Quality",
description="Experiment with wine characteristics to predict which its quality is!",
allow_flagging="never",
inputs=[
gr.Dropdown(label="Type", choices=["white", "red"]),
gr.Number(label="Fixed Acidity"),
gr.Number(label="Volatice Acidity"),
gr.Number(label="Citric Acid"),
gr.Number(label="Residual Sugar"),
gr.Number(label="Chlorides"),
gr.Number(label="Free Sulfur Dioxide"),
gr.Number(label="Total Sulfur Dioxide"),
gr.Number(label="Density"),
gr.Number(label="pH"),
gr.Number(label="sulphates"),
gr.Number(label="alcohol"),
],
outputs=gr.Image(type="pil"))
demo.launch(debug=True)