Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datetime import timedelta, datetime
|
3 |
+
import hopsworks
|
4 |
+
import joblib
|
5 |
+
from functions import *
|
6 |
+
|
7 |
+
#Connect to hopsworks and get feature store
|
8 |
+
project = hopsworks.login()
|
9 |
+
fs = project.get_feature_store()
|
10 |
+
|
11 |
+
#Function for the app
|
12 |
+
def predict_weather(location):
|
13 |
+
|
14 |
+
#Get future weather data
|
15 |
+
weather_data1 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=1)).strftime("%Y-%m-%d"))])
|
16 |
+
weather_data2 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=2)).strftime("%Y-%m-%d"))])
|
17 |
+
weather_data3 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=3)).strftime("%Y-%m-%d"))])
|
18 |
+
weather_data4 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=4)).strftime("%Y-%m-%d"))])
|
19 |
+
weather_data5 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=5)).strftime("%Y-%m-%d"))])
|
20 |
+
weather_data6 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=6)).strftime("%Y-%m-%d"))])
|
21 |
+
weather_data7 = get_weather_df([get_weather_data(location, (datetime.now() + timedelta(days=7)).strftime("%Y-%m-%d"))])
|
22 |
+
|
23 |
+
weather_df = pd.concat([weather_data1, weather_data2, weather_data3, weather_data4, weather_data5, weather_data6, weather_data7], axis=0)
|
24 |
+
|
25 |
+
weather_df = weather_df.drop(columns=["precipprob", "uvindex", "date", "city", "conditions"]).fillna(0)
|
26 |
+
weather_df.rename(
|
27 |
+
columns={"pressure": "sealevelpressure"}, inplace=True)
|
28 |
+
print(weather_df)
|
29 |
+
|
30 |
+
#Get model
|
31 |
+
mr = project.get_model_registry()
|
32 |
+
model = mr.get_model("gradient_boost_model5", version=1)
|
33 |
+
model_dir = model.download()
|
34 |
+
model = joblib.load(model_dir + "/model5.pkl")
|
35 |
+
|
36 |
+
#Create predictions
|
37 |
+
preds = model.predict(weather_df)
|
38 |
+
print(preds)
|
39 |
+
|
40 |
+
list_of_predictions = []
|
41 |
+
for x in range(7):
|
42 |
+
list_of_predictions.append("Aqi on " + (datetime.now() + timedelta(days=x+1)).strftime('%Y-%m-%d') + ": " + str(int(preds[x])))
|
43 |
+
|
44 |
+
return list_of_predictions
|
45 |
+
|
46 |
+
#Gradio interface
|
47 |
+
demo = gr.Interface(
|
48 |
+
fn=predict_weather,
|
49 |
+
title="Future air quality predictor",
|
50 |
+
description="Input the name of a location below to get future air quality predictions for that location",
|
51 |
+
allow_flagging="never",
|
52 |
+
inputs="text",
|
53 |
+
outputs="text"
|
54 |
+
)
|
55 |
+
|
56 |
+
demo.launch()
|