Create sft.py
Browse files
sft.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from datasets import load_dataset
|
| 16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Mxfp4Config
|
| 17 |
+
|
| 18 |
+
from trl import (
|
| 19 |
+
ModelConfig,
|
| 20 |
+
ScriptArguments,
|
| 21 |
+
SFTConfig,
|
| 22 |
+
SFTTrainer,
|
| 23 |
+
TrlParser,
|
| 24 |
+
get_peft_config,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def main(script_args, training_args, model_args):
|
| 29 |
+
# ------------------------
|
| 30 |
+
# Load model & tokenizer
|
| 31 |
+
# ------------------------
|
| 32 |
+
quantization_config = Mxfp4Config(dequantize=True)
|
| 33 |
+
model_kwargs = dict(
|
| 34 |
+
revision=model_args.model_revision,
|
| 35 |
+
trust_remote_code=model_args.trust_remote_code,
|
| 36 |
+
attn_implementation=model_args.attn_implementation,
|
| 37 |
+
torch_dtype=model_args.torch_dtype,
|
| 38 |
+
use_cache=False if training_args.gradient_checkpointing else True,
|
| 39 |
+
quantization_config=quantization_config,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
+
model_args.model_name_or_path, **model_kwargs
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 47 |
+
model_args.model_name_or_path,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# --------------
|
| 51 |
+
# Load dataset
|
| 52 |
+
# --------------
|
| 53 |
+
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
| 54 |
+
|
| 55 |
+
# -------------
|
| 56 |
+
# Train model
|
| 57 |
+
# -------------
|
| 58 |
+
trainer = SFTTrainer(
|
| 59 |
+
model=model,
|
| 60 |
+
args=training_args,
|
| 61 |
+
train_dataset=dataset[script_args.dataset_train_split],
|
| 62 |
+
eval_dataset=dataset[script_args.dataset_test_split]
|
| 63 |
+
if training_args.eval_strategy != "no"
|
| 64 |
+
else None,
|
| 65 |
+
# You had `processing_class` here, but SFTTrainer expects `tokenizer`
|
| 66 |
+
tokenizer=tokenizer,
|
| 67 |
+
peft_config=get_peft_config(model_args),
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
trainer.train()
|
| 71 |
+
trainer.save_model(training_args.output_dir)
|
| 72 |
+
if training_args.push_to_hub:
|
| 73 |
+
# You had dataset_name here, but it's not a valid argument for push_to_hub in this context.
|
| 74 |
+
# It will use the hub_model_id from TrainingArguments.
|
| 75 |
+
trainer.push_to_hub()
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
|
| 80 |
+
script_args, training_args, model_args, _ = parser.parse_args_and_config(
|
| 81 |
+
return_remaining_strings=True
|
| 82 |
+
)
|
| 83 |
+
main(script_args, training_args, model_args)
|