gradio_deploy / aot /train_eval.sh
Schrodingers's picture
Upload folder using huggingface_hub
ffbe0b4
exp="default"
gpu_num="4"
model="aott"
# model="aots"
# model="aotb"
# model="aotl"
# model="r50_deaotl"
# model="swinb_aotl"
## Training ##
stage="pre"
python tools/train.py --amp \
--exp_name ${exp} \
--stage ${stage} \
--model ${model} \
--gpu_num ${gpu_num}
stage="pre_ytb_dav"
python tools/train.py --amp \
--exp_name ${exp} \
--stage ${stage} \
--model ${model} \
--gpu_num ${gpu_num}
## Evaluation ##
dataset="davis2017"
split="test"
python tools/eval.py --exp_name ${exp} --stage ${stage} --model ${model} \
--dataset ${dataset} --split ${split} --gpu_num ${gpu_num}
dataset="davis2017"
split="val"
python tools/eval.py --exp_name ${exp} --stage ${stage} --model ${model} \
--dataset ${dataset} --split ${split} --gpu_num ${gpu_num}
dataset="davis2016"
split="val"
python tools/eval.py --exp_name ${exp} --stage ${stage} --model ${model} \
--dataset ${dataset} --split ${split} --gpu_num ${gpu_num}
dataset="youtubevos2018"
split="val" # or "val_all_frames"
python tools/eval.py --exp_name ${exp} --stage ${stage} --model ${model} \
--dataset ${dataset} --split ${split} --gpu_num ${gpu_num}
dataset="youtubevos2019"
split="val" # or "val_all_frames"
python tools/eval.py --exp_name ${exp} --stage ${stage} --model ${model} \
--dataset ${dataset} --split ${split} --gpu_num ${gpu_num}