Schrodingers's picture
Upload folder using huggingface_hub
ffbe0b4
from __future__ import division
from __future__ import print_function
import argparse
import time
import torch
from spatial_correlation_sampler import SpatialCorrelationSampler
from tqdm import trange
TIME_SCALES = {'s': 1, 'ms': 1000, 'us': 1000000}
parser = argparse.ArgumentParser()
parser.add_argument('backend', choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('-b', '--batch-size', type=int, default=16)
parser.add_argument('-k', '--kernel-size', type=int, default=3)
parser.add_argument('--patch', type=int, default=3)
parser.add_argument('--patch_dilation', type=int, default=2)
parser.add_argument('-c', '--channel', type=int, default=64)
parser.add_argument('--height', type=int, default=100)
parser.add_argument('-w', '--width', type=int, default=100)
parser.add_argument('-s', '--stride', type=int, default=2)
parser.add_argument('-p', '--pad', type=int, default=1)
parser.add_argument('--scale', choices=['s', 'ms', 'us'], default='us')
parser.add_argument('-r', '--runs', type=int, default=100)
parser.add_argument('--dilation', type=int, default=2)
parser.add_argument('-d', '--dtype', choices=['half', 'float', 'double'])
args = parser.parse_args()
device = torch.device(args.backend)
if args.dtype == 'half':
dtype = torch.float16
elif args.dtype == 'float':
dtype = torch.float32
else:
dtype = torch.float64
input1 = torch.randn(args.batch_size,
args.channel,
args.height,
args.width,
dtype=dtype,
device=device,
requires_grad=True)
input2 = torch.randn_like(input1)
correlation_sampler = SpatialCorrelationSampler(
args.kernel_size,
args.patch,
args.stride,
args.pad,
args.dilation,
args.patch_dilation)
# Force CUDA initialization
output = correlation_sampler(input1, input2)
print(output.size())
output.mean().backward()
forward_min = float('inf')
forward_time = 0
backward_min = float('inf')
backward_time = 0
for _ in trange(args.runs):
correlation_sampler.zero_grad()
start = time.time()
output = correlation_sampler(input1, input2)
elapsed = time.time() - start
forward_min = min(forward_min, elapsed)
forward_time += elapsed
output = output.mean()
start = time.time()
(output.mean()).backward()
elapsed = time.time() - start
backward_min = min(backward_min, elapsed)
backward_time += elapsed
scale = TIME_SCALES[args.scale]
forward_min *= scale
backward_min *= scale
forward_average = forward_time / args.runs * scale
backward_average = backward_time / args.runs * scale
print('Forward: {0:.3f}/{1:.3f} {4} | Backward {2:.3f}/{3:.3f} {4}'.format(
forward_min, forward_average, backward_min, backward_average,
args.scale))