SceneDiffuser's picture
Update app.py
97fb5a2
raw
history blame
7.21 kB
import os
import gradio as gr
import random
import pickle
import numpy as np
import zipfile
import trimesh
from PIL import Image
from huggingface_hub import hf_hub_download
def pose_generation(scene, count):
assert isinstance(scene, str)
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/pose_generation/results.pkl')
with open(results_path, 'rb') as f:
results = pickle.load(f)
images = [Image.fromarray(results[scene][random.randint(0, 19)]) for i in range(count)]
return images
def pose_generation_mesh(scene, count):
assert isinstance(scene, str)
scene_path = f"./results/pose_generation/mesh_results/{scene}/scene_downsample.ply"
if not os.path.exists(scene_path):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/pose_generation/mesh_results.zip')
os.makedirs('./results/pose_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/pose_generation/')
res = './results/pose_generation/tmp.glb'
S = trimesh.Scene()
S.add_geometry(trimesh.load(scene_path))
for i in range(count):
rid = random.randint(0, 19)
S.add_geometry(trimesh.load(
f"./results/pose_generation/mesh_results/{scene}/body{rid:0>3d}.ply"
))
S.export(res)
return res
def motion_generation(scene):
assert isinstance(scene, str)
cnt = {
'MPH1Library': 3,
'MPH16': 6,
'N0SittingBooth': 7,
'N3OpenArea': 5
}[scene]
res = f"./results/motion_generation/results/{scene}/{random.randint(0, cnt-1)}.gif"
if not os.path.exists(res):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/motion_generation/results.zip')
os.makedirs('./results/motion_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/motion_generation/')
return res
def grasp_generation(case_id):
assert isinstance(case_id, str)
res = f"./results/grasp_generation/results/{case_id}/{random.randint(0, 19)}.glb"
if not os.path.exists(res):
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/grasp_generation/results.zip')
os.makedirs('./results/grasp_generation/', exist_ok=True)
with zipfile.ZipFile(results_path, 'r') as zip_ref:
zip_ref.extractall('./results/grasp_generation/')
return res
def path_planning(case_id):
assert isinstance(case_id, str)
results_path = hf_hub_download('SceneDiffuser/SceneDiffuser', 'results/path_planning/results.pkl')
with open(results_path, 'rb') as f:
results = pickle.load(f)
case = results[case_id]
steps = case['step']
image = Image.fromarray(case['image'])
return image, steps
with gr.Blocks() as demo:
gr.Markdown("# **<p align='center'>Diffusion-based Generation, Optimization, and Planning in 3D Scenes</p>**")
gr.HTML(value="<img src='file/figures/teaser.png' alt='Teaser' width='710px' height='284px' style='display: block; margin: auto;'>")
gr.HTML(value="<p align='center' style='font-size: 1.25em; color: #485fc7;'><a href='' target='_blank'>Paper</a> | <a href='' target='_blank'>Project Page</a> | <a href='' target='_blank'>Github</a></p>")
gr.Markdown("<p align='center'><i>\"SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning.\"</i></p>")
## five task
## pose generation
with gr.Tab("Pose Generation"):
with gr.Row():
with gr.Column():
input1 = [
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes'),
gr.Slider(minimum=1, maximum=4, step=1, label='Count', interactive=True)
]
button1 = gr.Button("Generate")
with gr.Column():
output1 = [
gr.Gallery(label="Result").style(grid=[1], height="auto")
]
button1.click(pose_generation, inputs=input1, outputs=output1)
with gr.Tab("Pose Generation Mesh"):
input11 = [
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes'),
gr.Slider(minimum=1, maximum=4, step=1, label='Count', interactive=True)
]
button11 = gr.Button("Generate")
output11 = gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
button11.click(pose_generation_mesh, inputs=input11, outputs=output11)
## motion generation
with gr.Tab("Motion Generation"):
with gr.Row():
with gr.Column():
input2 = [
gr.Dropdown(choices=['MPH16', 'MPH1Library', 'N0SittingBooth', 'N3OpenArea'], label='Scenes')
]
button2 = gr.Button("Generate")
with gr.Column():
output2 = gr.Image(label="Result")
button2.click(motion_generation, inputs=input2, outputs=output2)
## grasp generation
with gr.Tab("Grasp Generation"):
with gr.Row():
with gr.Column():
input3 = [
gr.Dropdown(choices=['contactdb+apple', 'contactdb+camera', 'contactdb+cylinder_medium', 'contactdb+door_knob', 'contactdb+rubber_duck', 'contactdb+water_bottle', 'ycb+baseball', 'ycb+pear', 'ycb+potted_meat_can', 'ycb+tomato_soup_can'], label='Objects')
]
button3 = gr.Button("Run")
with gr.Column():
output3 = [
gr.Model3D(clear_color=[255, 255, 255, 255], label="Result")
]
button3.click(grasp_generation, inputs=input3, outputs=output3)
## path planning
with gr.Tab("Path Planing"):
with gr.Row():
with gr.Column():
input4 = [
gr.Dropdown(choices=['scene0603_00_N0pT', 'scene0621_00_cJ4H', 'scene0634_00_48Y3', 'scene0634_00_gIRH', 'scene0637_00_YgjR', 'scene0640_00_BO94', 'scene0641_00_3K6J', 'scene0641_00_KBKx', 'scene0641_00_cb7l', 'scene0645_00_35Hy', 'scene0645_00_47D1', 'scene0645_00_XfLE', 'scene0667_00_DK4F', 'scene0667_00_o7XB', 'scene0667_00_rUMp', 'scene0672_00_U250', 'scene0673_00_Jyw8', 'scene0673_00_u1lJ', 'scene0678_00_QbNL', 'scene0678_00_RrY0', 'scene0678_00_aE1p', 'scene0678_00_hnXu', 'scene0694_00_DgAL', 'scene0694_00_etF5', 'scene0698_00_tT3Q'], label='Scenes'),
]
button4 = gr.Button("Run")
with gr.Column():
# output4 = gr.Gallery(label="Result").style(grid=[1], height="auto")
output4 = [
gr.Image(label="Result"),
gr.Number(label="Steps", precision=0)
]
button4.click(path_planning, inputs=input4, outputs=output4)
## arm motion planning
with gr.Tab("Arm Motion Planning"):
gr.Markdown('Coming soon!')
gr.Markdown("<p>Note: Currently, the output results are pre-sampled results. We will deploy a real-time model after we release the code.</p>")
demo.launch()